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ABSTRACT

The design of systems for automatic audio feature extrac-
tion is a central aspect of the field of Music Information Re-
trieval. However, feature extraction systems often do not pro-
vide an indication of the reliability of the corresponding fea-
ture. Nevertheless, the provision of a reliability or confidence
measure can be critical for the usage of a given feature in
complex systems and real-world applications. In the present
study we investigate the relationship between the entropy of
a rhythmogram, which has been proposed as a descriptor of
tempo salience in previous work, and the reliability of the ex-
traction of multiple high level rhythm related features. The
results show that this single descriptor is viable for simulta-
neously estimating the reliability of multiple rhythm features
extraction. The results also provide quantitative insight that is
consistent with qualitative observations extensively reported
in the literature on a qualitative basis.

Index Terms— MIR, rhythm, meter, tempo, beat tracking

1. INTRODUCTION

The design of systems for automatic audio feature extraction
is a central aspect of the field of Music Information Retrieval
(MIR). Combining features or using one feature to inform the
extraction of another (e.g. beat synchronous chromagram)
has appeared to be a fruitful approach [1, 2]. However, fea-
ture extraction systems often do not provide an indication of
the reliability of the corresponding feature. Nevertheless, the
provision of a reliability or confidence measure can be criti-
cal for usage of a given feature in complex systems and real-
world applications [3]. In this paper we focus on the case of
high-level rhythm features, namely tempo, beat positions and
metrical structure.

It has been extensively reported in the MIR literature that
it is difficult to reliably extract high-level rhythm related fea-
tures from musical excerpt having properties such as soft on-
sets, heavy syncopation or making use of expressive timing
(e.g. rubato playing). There is relatively little effort in quanti-
fying this, however. In an attempt to estimate related charac-
teristics of the musical signal, the extraction of indicators such
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as ‘beat strength’ [4] and ‘pluse clarity’ [5] have been pro-
posed. These studies provided a direct evaluation of estima-
tion of ‘beat strength’ or ‘pulse clarity’ against human judg-
ment, but did not investigate the impact of such an attribute
on the extraction of related rhythm features. The estimation
of the difficulty of feature extraction has received some atten-
tion in the particular case of beat-tracking [6]. Goto used the
difference of the power on the beat, and the power on other
positions to assess the beat tracking difficulty of a song [7].
An alternative approach to beat tracking difficulty estimation
is based on disagreement in a committee of beat trackers, so
that a disagreement suggests a difficult case for beat tracking
[8].

In recent work, Thoshkahna demonstrated that the entropy
of a cyclic tempogram [9] can be used as an indicator of the
tempo salience of a musical piece [10]. However, the tem-
pogram feature captures multiple properties of the musical
signal related to what have been reported as problematic for
high level rhythm features extraction such as beat tracking or
tempo estimation. Such properties could be expressive tim-
ing [8] (resulting in a widening of the horizontal lines in a
rhythmogram) or strong syncopation (resulting in an overall
blurring of the rhythmogram) [10]. In this paper we show that
the entropy of a rhythmogram can be interpreted as a single
estimate of the reliability of the automatic estimation of sev-
eral high level rhythm features. In section 2 we describe the
rhythm salience feature we used. The experiment and results
are presented in section 3 and section 4 respectively, and the
conclusions are drawn in section 5.

2. RHYTHM SALIENCE FEATURE

The rhythm salience feature used in this paper is derived from
the processing proposed by Thoshkahna [10]. From the audio
signal, an onset detection function is computed using the Su-
perflux method, which improves on the spectral flux method
[11] by incorporating robustness against vibrato using a max-
imum filter [12]. A rhythmogram RF (t, f) is then gener-
ated as the Fourier transform based magnitude spectrogram
of the onset detection function, using 12 seconds long Han-
ning windows and 0.2 seconds step. Although the terms ‘tem-
pogram’ and ‘rhythmogram’ refer to the same processing, we
will favour the term ‘rhythmogram’ in the remainder of this
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paper because this feature captures more information than just
the tempo [13, 14]. The cyclic variation of the rhythmogram
(which is not used in this study) consists in wrapping it over
one octave so that pulses related by a power of two are iden-
tified, by analogy with the chromagram processing [9].

The columns of the rhytmogram are normalised with re-
spect to the L1 norm, and for a vector x = (x1, · · · , xm) in
RM representing the kth rhythmogram frame, the entropy Sk

is defined as:

Sk =

∑M
m=1−xm log2(xm)

log2(M)
(1)

with M the number of frequency bins in the rhythmogram.
The entropy, commonly used as a measure of disorder,

or uncertainty in a probabilistic framework, takes high values
for uniform distributions of energy in vector x, and small val-
ues for highly organised, and therefore uneven, distributions.
The former corresponds to musical signals having no consis-
tent or clear pulse emerging in the analysis window and the
latter corresponds to musical signals with very salient pulse
[10]. Considering the length of the analysis windows, the
consistency of the rhythmic properties of the music also im-
pacts the results: large inconsistencies — that could corre-
spond for example to heavy syncopation or rubato playing —
would typically results in a blurring of the rhythmogram, and
therefore in an increased entropy value. These inconsistencies
are known for creating challenging conditions for high level
rhythm features extraction, and therefore motivates our con-
sideration of the entropy as a descriptor for feature extraction
reliability in the present study.

3. EXPERIMENT

The experiment is structured as follows. First, several features
are extracted from audio and the performance of the extrac-
tion is evaluated using standard metrics. Secondly, a measure
of the rhythmic salience is computed for every track accord-
ing to the method specified in section 2. We then investigate
how it relates to feature extraction performance. It is impor-
tant to note at this point that the aim of this paper is not to
investigate nor improve feature extraction or evaluation meth-
ods — we refer to relevant literature for this purpose. Instead,
we focus on the analysis of the relationship between rhythm
salience and feature extraction performance.

We consider three feature extraction procedures, namely
tempo and metrical structure estimation and beat tracking.
Tempo estimation is performed using the Vamp plugin imple-
mentation1 of a two-state context dependent algorithm [15].
The metrical structure is extracted based on prior work by
Quinton et. al [13]. As per the beat tracking, the evaluation
results are drawn from a prior study on beat tracking evalua-
tion [8]. Two publicly available datasets are used to carry out

1http://www.vamp-plugins.org/download.html

the estimation of feature extraction reliability. The GTZAN
dataset [16] is used in the case of tempo and metrical struc-
ture, alongside with the corresponding annotations for tempo2

and metrical structure [13]. For these two features we use the
track-level average values of rhythmic features. The tracks of
the GTZAN dataset being 30 seconds long and of overall rea-
sonable consistency (in other words they do not contain a lot
of musical changes), the track-level average is a reasonable
estimate of the track content.

For each track the estimated tempo is compared to the an-
notated tempo, and considered correct if they are equal within
a tolerance window of 8% of the annotated value, consistently
with the standard adopted in the MIREX audio tempo evalu-
ation task3. We refer to the original publication for a detailed
description of the metrical hierarchy feature extraction evalu-
ation metrics [13]. For each track, the extracted feature con-
sists of an estimate of the pulse rate of all the metrical levels
present in the music. They are then compared with the cor-
responding annotations and the result is summarised by an
F-measure. In both cases the hypothesis is that the feature
extraction procedure is considered reliable if it consistently
matches the human annotations. In the case of beat track-
ing, we rely on the difficulty assessment by disagreement in a
committee of beat trackers [8]. The authors used this method
to compose a dataset of 40 seconds long ‘hard’ and ‘easy’ mu-
sical excerpts. The hard tracks were chosen for their propen-
sity to generate disagreement in the committee, that is to say
unreliable beat estimates. Conversely, reliable beat estimates
are consistently produced for ‘easy’ tracks. For each musical
excerpt considered in this paper, we computed the rhythmo-
gram entropy according to equation 1, and an average entropy
value S is obtained by averaging the values for each frame Sk.

4. RESULTS

In this section we analyse the relationship between the rhyth-
mogram entropy and the performance of rhythm features ex-
traction algorithms, evaluated according to the methods de-
scribed in section 3. The evaluation procedures being feature
specific, the results are presented on a per-feature basis.

4.1. Metrical structure

We first investigate the existence of a linear correlation be-
tween the entropy and the performance F-measure for all the
songs. The Pearson, Spearman and Kendall coefficients were
computed and are presented in Table 2. Pearson coefficient
is a measure of linear correlation and results in absolute val-
ues between 0 (no correlation) and 1 (maximum correlation).
The very low value observed here does not reveal a significant
linear correlation between entropy and the algorithm perfor-
mance. Similarly, Spearman and Kendall coefficients produce
absolute values between 0 and 1, measuring the monotonic

2http://www.marsyas.info/tempo/genres tempos.mf
3http://www.music-ir.org/mirex/wiki/2015:Audio Tempo Estimation
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Fig. 1. Metrical structure feature extraction performance,
given by the F-measure, against track mean entropy. Each
dot on the graph represents the results of the evaluation for a
track of the GTZAN dataset.

relationship between entropy and algorithm performance.
Again, low values suggest the absence of significant mono-
tonic correlation. This evidence is graphically corroborated
by the scatter plot of Figure 1. However, it is salient on
this plot that the bottom left area contains little to no points,
which seem to indicate a tendency in the distribution, despite
the absence of linear correlation: tracks with low entropy
tend to consistently lead to good performance while tracks
with high entropy result in inconsistent performance.

In order to gain more statistical insight, data points are
now grouped by entropy classes. Figure 2 shows the boxplot
of the distribution of the feature extraction performance F-
measure for each entropy class. Although the [0.6,0.65] class
appears as a relative outlier, it suggests a tendency for the
performance characterised by the F-measure to be relatively
consistent up until the entropy reaches values around 0.8, and
a clear decrease of both mean performance and performance
consistency (characterised by the spread of the distribution)
is observed. In order to assess the statistical significance of
the drop in mean performance, we run a two sample Welch
t test on F-measures distributions belonging to adjacent en-
tropy classes. The results are shown in Table 1 and confirm
that the decrease of mean performance observed for entropy
values higher than 0.8 is statistically significant at the 0.001
level. The distributions for the two smaller entropy classes
also exhibit apparently significant differences in their means
(p < 0.01). The number of observations in these classe is
very small (<10 in the lowest entropy class) and the overall
mean F-measure remains very high as well as the spread of
the distribution remains small. As a consequence, although
the means of these two classes are different, the data still
suggests both high performance and high performance con-
sistency, with high mean and narrow distribution. The width
of the distribution in the [0.6,0.65] entropy class is probably
affected by a number of relatively mediocre performance out-
liers, as suggested by the scatter plot of Figure 1. Neverthe-
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Fig. 2. F-measure distribution for each entropy class. Mean
is represented by a green dot, and median by a red line.

Table 1. Two sample Welsch’s t-test p-values for the mean of
F-measure of metrical hierarchy evaluation. Values rejecting
the null hypothesis of equal means at the 0.001 level are in
bold font.

Entropy classes p-value
[0.5, 0.55] and [0.55, 0.6] 0.004
[0.55, 0.6] and [0.6, 0.65] 0.005
[0.6, 0.65] and [0.65, 0.7] 0.117
[0.65, 0.7] and [0.7, 0.75] 0.076
[0.7, 0.75] and [0.75, 0.8] 0.644
[0.75, 0.8] and [0.8, 0.85] � 0.001
[0.8, 0.85] and [0.85, 0.9] � 0.001
[0.85, 0.9] and [0.9, 0.95] � 0.001

less, its mean appears not to be significantly different from
the mean of the [0.65,0.7] class.

In conclusion, it appears that for entropy values higher
than 0.8 (approximately), firstly the mean performance sig-
nificantly decreases and secondly the consistency of perfor-
mance also decreases, as suggested by the widening of the
performance scores distribution. In other words, the reliabil-
ity of the feature extraction significantly drops for high en-
tropy values, while it remains relatively stable on the lower
range.

4.2. Tempo

The evaluation of tempo extraction provides a dichotomy be-
tween correct and incorrect estimations. The resulting data is
grouped in entropy classes so that some statistical information
can be derived. The percentage of successful tempo estima-
tion for each entropy class is given in Figure 3. The apparent
trend in this data suggests that the tempo extraction accuracy
decreases as the rhythmic entropy increases. The Pearson,
Spearman and Kendall coefficients computed for the middle
of the entropy class and the tempo accuracy for each class
are given in Table 2. The Spearman and Kendall coefficient
strongly reveal the monotonic relationship between entropy
and tempo estimation accuracy. Moreover, the Pearson coef-
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Table 2. Correlation coefficients between entropy and both
mean tempo accuracy for an entropy class and metrical struc-
ture F-measure, alongside with the corresponding p-value.

Tempo Metrical Structure
Coefficient p-value Coefficient p-value

Pearson -0.947 0.0001 -0.282 <0.0001
Spearman -1.0 0.0 -0.247 <0.0001
Kendall -1.0 0.0002 -0.179 <0.0001
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Fig. 3. Mean tempo extraction accuracy (proportion of correct
estimations) for different entropy classes.

ficient suggests a good degree of negative linear correlation.
Tempo usually represents the rate of a metrical level, and

an ‘octave error’ occurs when the algorithm produces a tempo
estimate that is typically half or twice of the annotated tempo
in the case of duple meter (a third or three times in the case of
triple meter). As such, the ‘octave error’ estimate effectively
corresponds to a different metrical level than the one which
the annotated tempo is associated to. Therefore, incorporating
tolerance to octave error in the evaluation procedure implic-
itly relates to the estimation of a part of the metrical structure.
Interestingly, if the evaluation metric used is changed from
the strict condition of equality between the estimated and an-
notated tempo, as used above, to a metric that also counts an
‘octave error’ (by ratios of either 1/3, 1/2, 2 or 3) as a correct
tempo estimate, the distribution of percentage of ‘correct’ es-
timates exhibits a shape very similar to the distribution of av-
erage F-measure in the case of metrical structure extraction,
as shown by the comparison of Figure 4 and Figure 2. Here
again, the performance appears to be relatively stable from
lowest entropy class up to a critical value (around 0.8) from
which the performance drops.

4.3. Beat tracking

As a product of the assessment of beat tracking difficulty
by beat trackers disagreement, Holzapfel et al. composed a
dataset of ‘hard’ tracks for beat tracking [8]. Such tracks are
characterised by their propensity to result in disagreement be-
tween beat trackers, and by extension in unreliable beat esti-
mates. Alongside with the hard tracks, the authors provided
‘easy’ tracks, which result in good and reliable beat estimates.
The entropy distribution for ‘Hard’ and ‘Easy’ categories are
graphically set apart in Figure 5. In addition, we performed
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Fig. 4. Mean tempo extraction accuracy (proportion of cor-
rect estimations) for different entropy classes, also consider-
ing an octave error by a factor 1/3, 1/2, 2 or 3 as correct tempo
estimate.
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Fig. 5. Entropy distribution for the dataset published by
Holzapfel et al. [8].

a two sample Welch’s t-test that strongly rejected the null hy-
pothesis of equal means of the two distributions at the 0.001
level, which means that ‘easy’ tracks tend to have a signifi-
cantly smaller entropy than ‘hard’ tracks. This suggests that
the entropy measurement is correlated with the results ob-
tained by Holzapfel et al. [8]. In other words, the beat track-
ing difficulty, and thereby the reliability of the beat estimates,
that had been estimated using beat tracker disagreement, is
also related on average to measurement of the rhythmogram
entropy.

5. CONCLUSIONS

In this paper we have investigated the relationship between
the entropy of a rhythmogram derived from the audio and the
reliability of the extraction of several high level rhythm fea-
tures. We considered as reliable a feature extraction that per-
forms consistently well. Providing a reliability or confidence
value alongside an extracted feature significantly increases
its usability in complex systems and real-world applications.
The results show that the entropy is statistically related to the
reliability of the extraction of multiple high-level rhythm fea-
tures, a higher entropy typically being related to lower feature
extraction reliability. Given that the rhythmogram entropy is
computed directly from the audio and does not depend on the
feature extraction method, it is a valuable asset for the pro-
duction of a reliability value, even for features for which a
confidence value was not initially provided.
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