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ABSTRACT 

 

Based on the signal model of ear canals, a novel method for 

solving the inverse problem of estimating the unique 

solution of the ear canal area function and the eardrum 

reflection coefficient given the acoustic input impedance at 

the entrance of an ear canal is presented. Up-sampling 

techniques to improve the accuracy of the estimates are also 

presented. The performance of this method and factors 

affecting the accuracy of the estimates are investigated via 

simulations. It is found that the accuracy of the estimates is 

limited by the measurement bandwidth of the given ear canal 

input impedance. In the audio frequency range, the estimates 

obtained approximate well to the true ones. To obtain more 

accurate estimates, a wider measurement bandwidth of the 

ear canal input impedance is required. 

 

Index Terms— Ear canal area function, eardrum 

reflection coefficient, acoustic impedance, inverse method 

 

1. INTRODUCTION 
 

Ear canal cross-sectional areas and eardrum reflection 

coefficients are important factors determining the sounds 

received at human ears, and their measurements are 

important in many applications such as middle-ear pathology, 

psychoacoustic measurements, hearing aid design, and 

sound reproduction via headphones, to mention a few. It is 

difficult and invasive to measure ear canal area functions 

and eardrum reflection coefficients inside human ear canals 

[1-4]. Some non-acoustical methods such as CT scan and 

laser measurements of the ear canals and eardrum vibrations 

cannot reveal the acoustic transformation properties of the 

ears. Therefore, the development of non-invasive acoustical 

methods to measure ear canal area functions and eardrum 

reflection coefficients has been a research topic.  

Estimating ear-canal area functions and eardrum 

reflection coefficients from acoustic measurements at the 

entrances of ear canals are considered to be non-invasive.   

Similar inverse problems have been encountered in speech 

signal processing to estimate vocal-tract area functions from 

acoustic measurements at lips. Based on the Webster’s wave 

equation, it is known that the spatial Fourier coefficients of a 

vocal-tract area function are related to the formant 

frequencies of the vocal tract assuming that the glottal 

boundary is rigid [5-6]. However, the assumption about 

glottal boundary is unrealistic. To exclude the reflections 

from unknown glottal impedance, short-time sound pressure 

signals at the lip opening in response to a unit impulse of 

volume velocity are used to derive the area functions of 

vocal tracts based on the Webster’s wave equation [7-8]. 

This method has been adopted to estimate ear canal area 

functions and the eardrum impedances at reference planes 

[9]. However, direct measurements of the required short-

time sound pressure impulse responses are difficult. A 

gradient method for estimating the ear canal area function 

from the phase response of the reflection coefficient of an 

ear canal above 3 kHz is presented [10]. This method suffers 

from the problems of slow convergence. In [11], the time-

domain reflection coefficient at the entrance of an ear canal 

is obtained via inverse Fourier transform of the frequency-

domain reflection coefficient of the ear canal, and is used to 

estimate the ear canal area function according to the 

Webster’s wave equation. However, the solution to the 

eardrum reflection coefficient is not provided. A method for 

jointly estimating the ear-canal area function and the 

parameters of a simplified middle-ear impedance model is 

proposed via nonlinear optimization given the measured 

reflection coefficient of an ear canal [12]. However, the 

resulting estimates may be degraded by the simplified 

middle-ear model and initial values of the optimization.   

The present work models an ear canal as a multi-

sectional tube with a varying cross-sectional area function, 

and derives the relationship between the input impedance of 

the ear canal and the ear-canal area function and the eardrum 

reflection coefficient at the eardrum reference plane, based 

on the signal model of ear canals. From this relationship, the 

ear canal area function and the reflection coefficient at the 

reference plane are estimated, without imposing any model 

of middle ear impedances, and hence the potential 

degradation to the estimates caused by initial values and in-

accurate assumptions about the middle ear impedance is 

avoided. In Sec. 2, the signal model of ear canals is 

presented, and the relationship between the input impedance 

of the ear canal and the ear canal geometry and eardrum 

reflection coefficient is derived. In Sec. 3, the simulations to 

validate the method and investigate the factors affecting the 

estimation accuracy are presented. 
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2. INVERSION METHOD 
 

The goal of this section is to solve for the ear canal area 

function and the eardrum reflectance given the input 

impedance of the ear canal. It is known that below 15 kHz, 

sound waves in ear canals can be assumed as planar waves, 

and an ear canal can be modeled as an acoustic tube with a 

varying cross-sectional area function, and the effect of the 

eardrum can be modeled as a concentrated impedance ZTM 

connected to the ear canal at the umbo point [13, 14]. The 

portion of the ear canal from its entrance to the eardrum 

reference plane, which is the plane of wave front at the 

umbo position, is modeled as an M-sectional tube with equal 

sectional length L, as shown in Fig. 1, where the first section 

starts from the entrance of the ear canal. The terminal 

impedance of the M
th

 section ZT is formed by the parallel 

impedance of the eardrum impedance ZTM and the input 

impedance of the residual ear canal beyond the reference 

plane.  

Let the reflection coefficient from the end of the M
th

 

section be rT, which is determined by ZT and the M
th

 cross-

sectional area as shown in [14]. It is noted that rT 

corresponds to the eardrum reflection coefficient measured 

at the reference plane in human ears, and contains the effect 

of both eardrum impedance and the residual ear canal. Let 

um
+
(t) and um

-
(t) be the going-in and going-out volume 

velocities at the beginning of the m
th

 section, respectively, 

m=1, …, M.  Let Um
+
(f) and Um

-
(f) be the Fourier transforms 

of um
+
(t) and um

-
(t), respectively. In the frequency domain, 

the continuity of sound pressure and the continuity of 

volume velocity at the boundary of the m
th

 and (m+1)
th 

sections lead to the following equation [14],  
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Then, from Eqs. (1) and (4) the following equation holds: 
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G1(f) is related to the input impedance of the ear canal Z1(f): 
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where P1(f) and U1(f) are the Fourier transforms of the total 

sound pressure and total volume velocity at the entrance of 

the ear canal, respectively, S1 is the area of the entrance of 

the ear canal, and ρ is the air density. Eq. (6) leads to 
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( ) (1 ( )S / ) /(1 ( )S / )G f Z f c Z f c    .              (7) 

Assume that the tube attenuation can be ignored, i.e., 

 
Fig. 1 The tube model of an ear canal. 

 

km=2πf/c, that the sound signals are sampled at a rate Fs, and 

that the sectional length L of the tube model is related to Fs 

and the sound speed c as  

Fs=c/2L.                                              (8) 

Then, the discrete-time signals in the tube model (Fig.1) can 

be represented using their Z transforms as shown in Fig. 2 

[15], where rT(z) is the Z transform of the reflection 

coefficient from the end of the M
th

 section. In the Z domain, 

Eq. (5) becomes 
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where Gm(z) is the Z transform corresponding to Gm(f). 

According to the signal flow graph shown in Fig. 2, Gm(z) is 

the transfer function of an IIR (Infinite Impulse Response) 

filter, and can be expressed as  
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where gm(n) is the impulse response of Gm(z). Eq. (10) 

means that  

gm(n)=0,  n<=0,                              (11) 

and that  

(1)
m m
g r                                    (12)  

Given gm(n), we derive gm+1(n), the impulse response of 

Gm+1(z), as follows.  

Inserting the second line of Eq. (10) into Eq. (9) leads 

to the following equation:  
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Inserting Eq. (12) to Eq. (13), then gm+1(n) and gm(n) 

are related as: 
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Replacing n with n+1 in Eq. (14) leads to the following 

equation: 
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Thus, for m=1, …M-1, gm+1(n) can be derived from gm(n) 

according to Eqs. (15), rm, can then be obtained from gm(1) 

according to Eq. (12), Sm+1 can be derived from Sm 

according to Eq. (3), Gm+1(f) can be derived from Gm(f) 

according  to Eq. (5). g1(n), which is the impulse response of 

the volume velocity reflection coefficient from the entrance 

ZTM 

u1
+
(t) 

u1
-
(t) 

uM
+
(t) 

uM
-
(t) 
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Fig. 2 The Z-domain signal model of the ear canal. 

 

of the ear canal, is the key to the inverse solution. g1(n) can 

be obtained from the inverse Fourier transform of G1(f). G1(f) 

can be determined from the input impedance Z1(f) of the ear 

canal according to Eq. (7). Z1(f) and S1 can be measured at 

the entrance of the ear canal. The performance of this 

method is investigated via simulation in the next section. 

 

3. SIMULATION 

 

3.1. Synthesis of the input impedance of the ear canal 

 

The focus of the present paper is on the new method for 

obtaining the ear canal area function and the eardrum 

reflection coefficient at the eardrum reference plane given 

the input impedance of the ear canal, rather than the 

measurements of the ear canal impedances and area 

functions of human ears, which are nontrivial tasks. 

Therefore, synthetic input impedances of a model ear canal 

are used to investigate the performance of the proposed 

method.  

The cross-sectional radius of the ear canal model in 

Fig.1 is determined according to the model ear canal 

specified in [16] at positions [0.5, 1, 1.5, …, 27] mm from 

the entrance of the ear canal, as shown using the thin line in 

the middle-right panel of Fig. 3. The sectional length of the 

ear canal model is L=0.5 mm. The total length of the ear 

canal is 27 mm, and the umbo position is at 4 mm from the 

end of the ear canal. The eardrum impedance ZTM values at 

frequencies f=[5, 10, 15, …, 15000] Hz [14] are used here, 

and the magnitude and phase responses of ZTM are plotted 

using the thick dotted lines in the top-left and the top-right 

panels of Fig.3, respectively. Given the ear canal cross-

sectional area and ZTM, the input impedance of the ear canal 

Z1 is calculated iteratively according to [17]  
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where Zm, m=M, M-1, …, 1 is the impedance looking from 

the beginning of m
th

 section into the end of the ear canal, and 

ZM+1 = ZT. ZT is calculated given ZTM and the ear canal area 

function as shown in [14]. The magnitude and phase 

responses of ZT and Z1 are plotted using dash and solid lines, 

respectively, in the two top panels of Fig.3.  

 

3.2. Inverse solution 

 

Given Z1 and the area of the entrance of the ear canal S1, 

then the frequency response of G1(f) is calculated according 

to Eq. (7). The magnitude and phase responses of G1(f) are 

plotted using dash-dot lines in the bottom-left and bottom-

right panels of Fig.3, respectively. The upper frequency limit 

of ZTM and G1(f) is 15 kHz. If the inverse Fourier transform 

of G1(f) is used as g1(n), then the sampling rate for the 

inversion is Fs=30 kHz, and the sectional length for the 

inversion of the ear canal geometry is Linv=c/2Fs=5.9 mm, 

which is low in the spatial resolution considering that the 

average length of ear canals is about 27 mm. The spatial 

resolution can be improved by obtaining an up-sampled g1(n) 

as follows. 

First, according to the signal flow shown in Fig.2, one 

can model G(z) as an IIR filter with N poles and N zeros. 

The optimal G(z) that matches G1(f) is obtained via the 

Matlab function “invfreqz(h,w,n,m)”, given the values of 

G1(f) at frequencies f=[5, 10, 15, …, 15000], the sampling 

rate Fs1=30.1 kHz, and G(z=e
jπ

)=G1(f=15kHz). In this work, 

the optimal N value is determined such that the maximum 

difference between G1(f) and G(z=e
j2 π f/Fs1

) is minimum 

compared to that given by other N values in the range of 30 

and 130: 
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*
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where fi ∈ f. Second, obtain the impulse response of G(z
σ
), 

where σ=20, followed by a low-pass filter with a cut-off 

frequency 15 kHz at the sampling rate Fsinv=σFs1=602 kHz. 

Let g1(n) be sampled at Fsinv and truncated to length 

M=6000. The frequency response of G(z
σ
) at frequencies 

finv=[0, Fsinv/M, …., (M-1)Fsinv/M] is calculated. To apply the 

low-pass filter to G(z
σ
), set the frequency response of G(z

σ
) 

to zeros for 15000<finv<Fsinv -15000 Hz. The inverse Fourier 

transform of the low-pass filtered frequency response of G(z
σ
) 

yields g1(n) at the sampling rate Fsinv, as shown in the 

middle-left panel of Fig. 3. The sectional length for the 

estimate of the ear canal area function is Linv,=c/2Fsinv=0.29 

mm in this case.  

Given g1(n), then gm(n), rm, m=2, …, is derived 

according to Eq. (15) and Eq. (12), respectively. Given G1(f), 

S1 and rm, then Gm(f) and Sm, m=2, …, are derived according 

to Eq.(5) and Eq. (3), respectively. For this simulation, the 

first maximum negative peak of g1(n) is located at about 

0.1398 ms (middle-left panel of Fig.3), which corresponds to 

a reflection plane at a distance L1=24.6 mm from the 

entrance of the ear canal, i.e., about L2=1.6 mm beyond the 

eardrum reference plane. Thus, Sm and Gm can only be 

estimated up to m<=(L1-L2)/Linv,. The radius of Sm is shown 

using the thick line in the middle-right panel of Fig.3. The 

magnitude and phase responses of Gm at different distances 

to the reference plane are shown using different lines in the  
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Fig. 3 Simulation given realistic ear canal impedance Z1. 

 

bottom-left and bottom-right panels of Fig. 3. In practice, 

the umbo position is unknown. It can be estimated that the 

section closest to the eardrum reference plane is numbered 

as m<=(L1-L2)/Linv, where L1 can be estimated from the peak 

index of g1(n), and L2 is about 1.6 mm.  
 

3.3. Factors affecting the estimates 
 

It is found from middle-right panel of Fig. 3 that there are 

some differences between the estimate of the ear canal 

radius function and the original one used for synthesizing Z1, 

and that further up-sampling of g1(n) cannot reduce the 

differences. This is explained by the limitation in the 

bandwidth of the given input impedance Z1. It is known that 

the m
th 

spatial Fourier coefficient of the area function of a 

tube with a varying sectional area is related to the m
th

 

resonance frequency of the tube [5-6]. Since the given input 

impedance of the ear canal is limited to audio frequencies, 

only the first a few resonance frequencies of the ear canal 

are available, and hence only the first a few spatial Fourier 

coefficients of the ear canal area function can be obtained, 

resulting in an incomplete set of the spatial Fourier 

coefficients to represent the area function of the ear canal. 

To verify this cause, another simulation is performed 

assuming that the frequency response of the given Z1 are 

specified at f=[50, 100, …, 150000] Hz, which is 

synthesized according to Eq. (16) with the values of ZTM and 

hence ZT being specified at f=[50, 100, …, 150000] Hz.  

The magnitude and phase responses of the “super- 

bandwidth” ZTM, ZT and Z1 are shown in the top panels of Fig.  
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Fig. 4. Simulation given Z1 up to 150 kHz  

 

4 using the dotted green line, the dash red line and the solid 

blue line, respectively. For the cases with Fs1=300.1 kHz and 

σ= 20, the same procedure as described in Sections 3.1-3.2 

is applied. It is shown in middle-right panel of Fig.4 that the 

estimate of the ear canal radius function is nearly equal to 

the true one. Similar results are obtained for σ=10, 30, 40, 

confirming the effect of bandwidth on the estimate of ear 

canal geometry.  

It is noted that for both cases shown in Figs. 3 and 4, 

when m
th

 section does not contain the eardrum reference 

plane, as the distance between the beginning of the m
th

 

section and the eardrum reference plane decreases, Gm(f) 

approximates rT more and more .  In the inversion, the tube 

attenuation is assumed according to Eq. (2) as given in [18]. 

For estimation on real human ears, a realistic assumption 

about the tube attenuation of the ear canal is required to 

obtain accurate estimate of eardrum reflection coefficients. 
It is also found (not shown) that the estimate of the ear canal 

area function is not affected by assumed tube attenuation. 
 

4. CONCLUSION  
 

The present method shows that the unique solution of the ear 

canal area function and the eardrum reflection coefficient at 

the reference plane given the input impedance of an ear 

canal can be derived based on the signal model of ear canals, 

without using middle-ear models, and the problems of such 

models and non-linear optimization are avoided. The 

method is expected to have applications in hearing aid and 

headphone system design, middle ear pathology, auditory 

model, psycho-acoustic measurements, etc. 
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