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ABSTRACT

In this paper, classification between snore-inhale (SI), snore-
exhale (SE), breathe-inhale (BI), breathe-exhale (BE) and
noise (NS) sounds is performed. The database is obtained
from 7 subjects, who recorded whole night audio data in
their private home environments with their own smartphones.
Preprocessing is done by a modification of an adaptive noise
suppression method [1]. The classification system consists
of 5 binary RobustBoost classifiers (RBs) [2] applying the
one-vs.-rest strategy and an artificial neural network (ANN)
for voting on the outputs. ReliefF and Sequential Forward
Selection (SFS) extract a 5-dimensional feature vector, con-
sisting of psychoacoustic features from time and spectral
domain. Sensitivity (Se) and specificity (Sp) in percent on
a preprocessed (i.e. the signal contains only sound activity
segments), representative 1 h 20min dataset are:
SeSI,SE,BI,BE,NS = {80.91, 80.01 34, 12, 66.45, 29.53}
SpSI,SE,BI,BE,NS = {83.56, 91.70, 90.53, 83.32, 93.51}

Index Terms— Breath sounds detection, audio signal
processing, class noise, multiclassification systems, psychoa-
coustics

1. INTRODUCTION

Polysomnography is an expensive and inconvenient method,
which is in addition very costly and not always necessary.
Furthermore the patient has to spend the night in an unfa-
miliar environment, which affects sleep duration and sleep
efficiency [3]. As the number of smartphones is rising world-
wide [4], a simple and reliable technology for the detection of
breath sounds saves money for the health system in terms of
an early warning system (Obstructive Sleepapnea, Cheyne-
Stokes respiration etc.).
Current apps try to create a ”snore score”, by counting and
measuring the intensity of SI sounds. As all these apps are not
open source, an objective result about their quality is difficult
to obtain. However, in [5] 3 apps with the best performance
on snoring detection are experimentally evaluated in terms

of SI with disturbing noises. The apps detected the 600 SI-
sounds with a variance of σ2 =3272.3.
More academic approaches for detecting snore sounds (SI, SE
vs. Rest) are performed in [6], [7], [1] (SI vs. Rest) and [8].
Roughly, results are based on frequency band energies (FBE)
with an unsupervised k-Means clustering [8], Mel Frequency
Cepstral Coefficients (MFCCs) with a Hidden Markov Model
(HMM) [7], and diverse features from time- spectral- and
cepstral domain using an Ada-Boost classifier [1]. Se and Sp
are about 95% with condenser microphones in soundproof
environments. Also detecting snoring (SI, SE vs. NS, BI,
BE) but with smartphone data, [9] and [10] obtain an accu-
racy of 84.35% and 95.07% using FBE, Zero Crossing Rate,
Linear Predictive Coding (LPC) and a K-Nearest-Neighbour-
Classifier or formant analysis and a quadratic classifier.
The detection of snoring (S), breathing (B) and noise (N)
(SI, SE vs. BI, BE vs. NS) is performed in [11] and [12],
using condenser microphones. With MFCCs and HMM, [11]
achieves the following accuracies (Acc): AccS = 89%,
AccB = 73%, AccN = 69%. In [12], Largest Lya-
punov Exponents and Entropy are used with a Multiclass
Support Vector Machine (M-SVM) and an Adaptive Neuro
Fuzzy Inference System (ANFIS) achieving the results: (AN-
FIS) SeS = 73%, SeB = 53.62%, PPVS = 87.91%,
PPVB = 50.8%; (M-SVM) SeS = 87.58%, SeB=67.8%,
PPVS = 85.57%, PPVB = 60.32%.
To the knowledge of the authors, yet there has not been done
research on classifying audio signals in SI-, SE-, BI-, BE- and
NS-sounds with real-environment audio data from different
smartphones. This study is performed within Matlab (2015a).

2. MATERIALS AND METHODS

2.1. Sound Database

The audio data for developing and testing a classification sys-
tem, is gathered by an observational study of 7 subjects. All
subjects use their own smartphone in their home environment.
Full night audio recordings of 139 h 40min were collected.
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Table 1. Database
Device NS SI SE BI BE
1 32495 15205 0 601 11508

54.33% 25.24% 0.00% 1.00% 19.24%
2 33166 10081 289 3139 1325

69.10% 21.00% 0.60% 6.54% 2.76%
3 43505 0 705 1656 2134

90.64% 1.47% 0.00% 3.45% 4.45%
4 3721 1910 0 0 0

66.08% 33.92% 0.00% 0.00% 0.00%
5 41905 6095 0 0 0

87.30% 12.70% 0.00% 0.00% 0.00%
6 112798 0 0 0 13205

89.52% 0.00% 0.00% 0.00% 10.48%
7 33951 599 7662 4837 951

70.73% 1.25% 15.96% 10.08% 1.98%
Overall 301541 33890 8656 10233 29123

(106502) (33044) (6731) (7810) (22911)
78.64% 10.14% 2.23% 2.67% 7.60%
(60.17%) (18.67%) (3.8%) (4.41%) (12.94%)

Devices: 1 Apple iPhone 5, 2 Apple iPhone 4s, 3 Apple iPhone 5, 4 Sony
Xperia Z3, 5 Samsung Galaxy S5 LTE+, 6 Samsung Galaxy Alpha, 7 HTC
One M8.
Terms in brackets refer to the data after preprocessing.

For privacy reasons, the exact position of the subjects’ smart-
phones remains unknown. The sample rate is set to 16 kHz
and the bit depth to 16Bit. The data is split into sections, each
approx. 10min long. A representative selection of 122 sec-
tions are manually labelled, based on the human perception.
The feature selection and the evaluation of this data requires
too much computational cost, during the process of develop-
ment. Therefore, an extract of the labelled data is used, as
presented in table 1.

2.2. Preprocessing

Preprocessing discards segments with no information, re-
duces noise and performs an event detection.
The first step, is to reduce quantization noise of the oversam-
pled 16 kHz signal, to improve the SNR and achieve a higher
independence on the built-in A/D converter of the smart-
phone. Applying a high pass filter with a cut off frequency of
8 kHz and downsampling the signal by a factor of 2, results in
a decimated signal without loss of information in the relevant
spectrum [13]. Furthermore, computational cost is saved by
discarding half of the data.
To achieve quasi-stationary conditions of the short-time
Fourier analysis, the audio signal is split into frames of 25ms
with 50% overlap [14] and multiplied by a hamming window,
to minimize the leakage effect.
Subsequently, an adaptive noise suppression based on spectral
suppression process with the Wiener-filter is performed ([15]
in [1]). In other words, the spectral-distance of each frame
is compared to a noise-template. If it passes a threshold, the
noise-template is updated with the spectral components of

the current frame. The spectral components k of each frame l
are weighted by the equation 1 [1]. SNRPrio is obtained by
using the ”Decision Directed Method” as in [15].

G(k, l) = max

(
SNRPrio(k, l)

SNRPrio(k, l) + 1
,−25 dB

)
(1)

All indices of the estimated noise-frames n(l), are stored for
subsequent event-detection and filter methods (see figure 1).
Successive frames n(l) form a noise-segment Ni(L), where i
indicates the segment number. When retransforming the sig-
nal from spectral into time domain, all n(l) are stored in a
circular buffer noiseBuff, with a memory size of 20 s. The
noiseBuff is then used to create a dynamic energy threshold
with the quantile operator Q, as shown in equation 2.

EnThresh = QnoiseBuff (0.93) (2)

The next step is to discard segments, which contain no infor-
mation with respect to the classes NS, SI, SE, BI, BE. This
is performed by comparing the corresponding Ni(L) with
the minimum distance of two events, which is set to 0.1 s.
This makes sure, that no intra-event information is lost. The
soundactive-segments Si(L), have to be longer than the min-
imum event length of 0.2 s and the median energy value re-
quires to be higher than EnThresh (see eq. 2), otherwise
they are set to 0. This process is shown in figure 1. The
resulting dataset processed in this way, can be seen in the last
row of table 1. Simultaneously the normalized energies of
the soundactive segments Si(L) (see 3), are compared to the
dynamic threshold LowEn (see eq. 4). Points of intersec-
tion form the segmentation edges for the event detection (see
figure 1). Detected events are further checked with respect
to their length and distance and consequently either merged,
separated or discarded.

EN (S(L)) =
(

s(l)2

max(S(L)2)

)
l = 1...length(L) (3)

LowEn = QEN (S(L))(0.93) · 0.05 (4)

2.3. Feature Selection

Feature Selection is performed by first using the ReliefF algo-
rithm [16], followed by Sequential Forward Selection (SFS)
[17].
As 899 features from time-, spectral- and cepstral domain
are implemented, an automated process of selecting a sub-
set of relevant features is necessary. Testing classifiers
with many features requires too high computational cost,
thus a pre-filtering of the features is done using the Re-
liefF algorithm [16]. ReliefF is a filter type method and
selects features regardless of the classifier. As the per-
formance of the ReliefF algorithm is dependent on the K
nearest neighbours per class, the selection is processed for
K = {10, 30, 50, 70, 100, 200, 300, 400, 500}. The selected
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Fig. 1. Filtering segments with no information

features are chosen by creating the intersection of the 100
most relevant features for every K. Furthermore the 20 most
relevant features of every K are added to the subset, unless
already included. This results in a reduction from 899 to
85 features. These features are highly correlated, because
ReliefF does not take this into account. Now SFS is applied
on these 85 features using a RB (see 2.5) for {SI, SE} with
300 decision trees and an error goal of 20%. Improvement
in misclassification rate of at least 0.4% is used for stopping
criteria of the SFS algorithm. Applying first ReliefF and then
SFS, 5 features are selected as described in table 2 and pre-
sented in their correlation matrix in figure 2. A more detailed
description can be found in section 2.4. Due to complexity
reduction, the classes {SI, SE} are merged. Adding another
feature subset for {BI, BE} or NS, did not lead to satisfactory
results, in regard to the computational time required.

Table 2. Features which are selected by the ReliefF and SFS
method

No. Name Resolution
F1 First MFCC 25ms
F2 Third LPC Cepstrum Coeff. 25ms
F3 Modified Mel-Cepstability (MMC) Event
F4 Change in specific loudness (CSL) 300ms
F5 Pos. / neg. amplitude ratio 25ms
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Fig. 2. Correlation matrix of the selected features

2.4. Selected Features

Short explanation of the features in table 2.
F1 is the first MFCC with a a filterbank size of 32. It is
calculated as described in [18] with the preemphasis co-
efficient α = 0.95 and the Liftering parameter L = 22.
The calculation of F2 is performed by the Matlab command
lpc(currentFrame,p) and dsp.LPCToCepstral,
using a filter order of p = 12. F3 is motivated by ”mel-
cepstability” in [19] and therefore called Modified Mel-
Cepstability (MMC) (eq. 5). The main difference to [19]
is the dynamic, as the feature is calculated for every event,
which is detected with the method described in 2.2. When
classifying an event, the average energy of the last 10 seconds
is used to normalize the variance of the 12 MFCCs. Thus,
the past energy values Es are stored in a circular buffer, with
the corresponding size M1. The MFCCs are selected from
the frame with the highest mean energy value of the currently
analysed event (MFCCsmaxEn).

MMC =
var(MFCCsmaxEn)

1
M1

∑M1

s=1Es

0 < m ≤M1 (5)

F4 (CLS) is defined by equation 6 and is based on the Zwicker
Loudness as explained in [20], where N ′(z) is the specific
loudness within a Bark group z. The audio signal is scaled
to a level of 30 dB [21], which refers to a whispering sound.
A time window of 300ms for this feature is necessary, to not
violate the filters’ setting time.

CSL =
N ′(4)−N ′(3)

max(N ′(z))
0 ≤ z ≤ 24 [Bark] (6)
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processing

The amplitude ratio feature F5, is used as described in [22]
(eq. 7) where Pm and Nm refer to the absolute value of
the biggest and smallest amplitude of the frame, respectively.
However, in this work M2 is defined by the size of a circular
buffer, which stores the frames of the audio signal of the last
20 s.

PNAR = V ar

(
Pm −Nm

Pm +Nm

)
m = 1, ...,M2 (7)

2.5. Classification

The classification system consists of 5 binary RBs using the
one-vs.-rest strategy and an artificial neural network for vot-
ing on the outputs.
To tackle the problem of class noise [23], 5 RBs [2] are im-
plemented in parallel. Each classifier has a tree size of 300
and the following error goals (EG): EGSI = 7%, EGSE =
41%, EGBI = 23%, EGBE = 23%, EGNS = 28%. EG
are determined using heuristic models with the features of ta-
ble 2. As the test data is highly imbalanced (tab. 1), each
RB is trained with a balanced dataset by downsampling the
majority class. For voting on the output, an ANN with one
hidden layer and 5 neurons is used. Training of the ANN is
performed with balanced datasets and scaled conjugate gradi-
ent backpropagation (trainscg). Size and training method
are determined by choosing the best result (lowest classifica-
tion error), of all possible combinations of 3 to 30 neurons
and the most promising pattern recognition training methods
trainscg, traincgb, trainlm and trainrp.

3. RESULTS

The results of the noise detection (see 2.2), are shown in table
1 and in the confusion matrix (figure 3). All in all 53.83%
of the data is discarded, with a loss in information of 2.98%.
Over 50% of this loss is caused by BE.
Out of 899 features, 5 are selected using the implemented fea-
ture selection methods.
The classification results are generated performing a 10-fold

crossvalidation on the preprocessed dataset (tab. 1). Classifi-
cation results are shown in table 3 and in the confusion matrix
(tab. 4), respectively.

Table 3. Classification results
SI SE BI BE NS

Se 80.91% 80.01% 34.12% 66.45% 29.57%

Sp 83.56% 91.70% 90.53% 83.32% 93.52%

PPV 68.11% 47.50% 11.55% 31.24% 80.53%

Error 17.23% 9.31% 11.27% 18.41% 36.94%

Table 4. Confusion matrix of the classification result
Predicted outcome

SI SE BI BE NS
SI 80.92% 2.96% 4.54% 5.44% 6.13%
SE 4.25% 80.01% 7.49% 4.07% 4.19%
BI 13.42% 34.61% 36.12% 9.71% 6.14%
BE 13.05% 4.05% 6.89% 66.45% 9.56%A

ct
ua

lv
al

ue

NS 19.58% 10.78% 13.52% 26.58% 29.54%

4. DISCUSSION AND CONCLUSION

Audio files of each smartphone differ in sound quality, snor-
ing characteristics and distance from the source. Classifying
these highly imbalanced, class noise data sets into 5 classes
is a challenging task. The results in table 4 reflect the dif-
ficulties, when labelling the data. BI was hardly be heard,
which was made even more difficult after perceptual adap-
tion by a precedent and loud SE sound. Using physiological
parameters (e.g. diaphragmatic breathing) for training of the
classifiers, should improve the results especially for BI and
NS. Furthermore, a more sophisticated method for balancing
the classes should be applied.
The loss in information caused by BE, can be explained by
the adaptive energy threshold of the noise reduction, elimi-
nating 21.3% of this event after a loud SI sound.
All of the selected features are derived from the psychoa-
coustic domain. This is reasonable, since labelling is based
on human perception only. The selected features are legit-
imized by current research on breath sound detection [1],
[19], [22].

In this paper it is shown, that it is possible to classify
overnight smartphone audio files in 4 breath classes and 1
noise class. The data is collected with an observational study
from 7 different private surroundings, using their own smart-
phones. Five RBs tackle the problem of class noise and an
ANN is applied for voting on the RB outputs. The 5 fea-
tures which are used for every RB as an input vector, have
been automatically selected from a subset of 899 features. To
reduce computational time and improve accuracy, adaptive
noise suppression and filtering is applied.
Since computational power of smartphones is rising, imple-
mentation of the proposed improvements in combination with
using more data for training and testing, sleep-disordered
breathing detection for in-home becomes more accurate.
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