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ABSTRACT

Location and form of the upper airway obstruction is essential for
a targeted therapy of obstructive sleep apnea (OSA). Utilizing snore
sounds (SnS) to reveal the pathological characters of OSA patients
has been the subject of scientific research for several decades. Fewer
studies exist on the evaluation of SnS to identify the correspond-
ing obstruction types in the upper airway. In this study, we propose
a novel feature set based on wavelet transform with a support vec-
tor machine classifier to discriminate VOTE (velum, oropharyngeal
lateral walls, tongue base and epiglottis) snore sounds labelled dur-
ing drug-induced sleep endoscopy (DISE). Based on snore sound
data collected from 24 snoring subjects, processed by a subject-
independent 2-fold cross validation experiment, we can show that
our wavelet features outperform the frequently-used acoustic fea-
tures (formants, MFCC, power ratio, crest factor, fundamental fre-
quency) at an WAR (weighted average recall) of 78.2 % and an UAR
(unweighted average recall) of 71.2 %, with an enhancement rang-
ing from 5.1 % to 24.4 % and 12.2 % to 46.4 % in WAR and UAR,
respectively.

Index Terms— Snore Sounds, Obstructive Sleep Apnea, Upper
Airway, Wavelet Transform

1. INTRODUCTION

Obstructive sleep apnea (OSA) is a chronic disease which affects
13 % of men and 6 % of women in the USA [1]. Symptoms of
OSA can include, among others, daytime sleepiness, and morning
headache [2]. It is associated with reduced quality of life and an in-
dependent risk factor for hypertension [3], myocardial infarction [4]
and stroke [5]. OSA is defined as a syndrome with cessation of air-
flow for more than 10 seconds (5 or more episodes per hour in sleep),
usually associated with a decrease of oxyhemoglobin saturation [6].
Loud snoring is a typical symptom of OSA, reported in more than
80 % of OSA patients [7]. With the state-of-the-art theories and tech-
niques in acoustic analysis and modelling, there are many pioneers
[8] studying how to use snore sounds (SnS) to distinguish OSA pa-
tients and primary snorers, with promising results. The precise anal-
ysis of the underlying individual anatomical mechanisms of snoring
and OSA can lead to a targeted and less invasive surgical approach.
Today, drug induced sleep endoscopy (DISE) is increasingly used to
identify location and form of vibrations and obstructions [9] in or-
der to evaluate the obstruction level and pattern. However, DISE is

time consuming, costly, and places patients under strain. Determi-
nation of the excitation location within the upper airways by means
of acoustic analysis of the snoring noise could be easier for doctor
and patient. However, there are few studies on the subject of de-
termining the obstruction or vibration sites within the upper airway
based on acoustic features. Miyazaki et al. studied the relationship
of the fundamental frequency of SnS and the obstruction site, dis-
tinguishing between soft palate, tonsils/tongue base, combined type
(both palate and tonsils/tongue base), and the larynx [10]. The crest
factor, a simple but practical acoustic character, had been demon-
strated to be efficient to distinguish palatal and non-palatal snorers
[11]. Agrawal et al. compared peak frequency, centre frequency and
power ratio variations of different snores and the distinction between
natural sleep and induced sleep [12]. Beeton et al. indicated that
with a combination of a 2-means clustering method and the statis-
tical dimensionless moment coefficients of skewness and kurtosis,
they could discriminate palatal and non-palatal snoring [13].

In the above mentioned studies, basic acoustic features have
been evaluated for their suitability and performance to distinguish
between different types of snoring. But the models based on ma-
chine learning and signal processing have not yet been described for
this purpose. It must be noted that the ‘snore site’ and the ‘obstruc-
tion site’ in the upper airway are two different definitions, which
may or may not coincide in individual patients. In our work, we
exclusively focus on the determination of the site of vibration as a
cause for the generation of snore sounds. Our definition of the snore
site is in line with the ‘VOTE’ concept, introduced by Kezirian et al.
for the use in DISE evaluation [14]. Based on this classification we
distinguish between the velum, the oropharyngeal area, the tongue
Base, and the epiglottis level to define the classes of snorers.

In this study, we present a wavelet transformation based fea-
ture set with a support vector machine (SVM) for classification of
VOTE snore sounds. This wavelet transformation based method
originated from the work by Khushaba et al. [15], which has been
demonstrated to be effective in electroencephalogram (EEG), elec-
trooculogram (EOG), and electrocardiogram (ECG) signal process-
ing. We elaborate on selecting a suitable ‘wavelet type’, namely,
the wavelet function for extraction of descriptors from the SnS. We
compare our proposed feature set with some frequently-used acous-
tic features (e. g., formants, MFCC, power ratio, crest factor, and
fundamental frequency). The results prove that wavelet features can
outperform other frequently-used feature sets.
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Table 1. Anthropological information (age, body mass index (BMI)
and Apnea/Hypopnea Index (AHI)) of the patients.

mean std range

Age [years] 46.2 13.2 26 – 72
BMI [kg/m2] 26.8 2.9 18.9 – 31.5
AHI [events/h] 20.4 10.7 6.2 – 45.6

Table 2. Instance numbers for each data group and the distribu-
tion of our V (the velum), O (the oropharyngeal area), T (the tongue
Base), and E (the epiglottis level) Type SnS data.

V O T E All

Group 1 376 132 18 125 651
Group 2 434 111 46 141 732
Total 810 234 64 266 1 383

2. MATERIALS AND METHODS

2.1. Patients and Data

This study is approved by the ethic committee of Klinikum rechts
der Isar, Technische Universität München, Germany. We collected
SnS data from 24 subjects diagnosed with primary snoring or OSA
through a polysomnography (PSG) beforehand. The anthropologi-
cal information of patients, namely the age, body mass index (BMI),
and the Apnea/Hypopnea Index (AHI) are listed in Table 1. DISE
was performed in all patients in order to determine adequate surgi-
cal intervention measures. The DISE video was recorded using a
flexible nasopharyngoscope; audio information was recorded in par-
allel using a headset microphone and synchronously stored in the
same file (MP4). In the video and audio recordings, the locations
of sound generation were categorised based on the VOTE classifica-
tion by an ENT (ear, nose, and throat) expert. Only recordings that
showed a clearly identifiable, single source of snoring sound have
been included. Snoring events with mixed forms (several vibration
locations) or unclear source of vibration were excluded. From each
included recording, three to five snoring events, which showed no
obstructive disposition, have been manually selected. These snor-
ing events have then been extracted from the audio data stream, and
labelled based on the VOTE classification.

In total, we used 117 snoring episodes (time lasts from 0.31 to
2.17 s with an average of 1.24 s), which include 66, 20, 10, and 21
episodes of V, O, T, E types of SnS, respectively. The audio files
have a sampling frequency of 16 kHz with 16-bit resolution. We seg-
mented the episodes into single instances for further feature extrac-
tion and machine processing. Every instance has a length of 200 ms
and neighbouring instances have an overlap of 50 %. To make full
use of our limited data, we performed a 2-fold cross validation-based
subject-independent evaluation. We randomly separated the 24 pa-
tient’s data into two groups, i. e., each group has the SnS instances
from 12 patients. The number of instances for each group are shown
in Table 2.

2.2. Wavelet Features

In 2007, Matsiki et al. firstly studied the use of wavelet-based meth-
ods to analyse SnS of OSA patients [16]. They adopted the con-

tinuous wavelet transforn (CWT) with a Morlet wavelet function to
analyse the energy distribution of SnS before, during, and after an
OSA event. They indicated that the energy distribution of a snoring
episode directly following an apneic event is higher compared to a
snoring episode before or during an apnea. However, they did not
reveal whether wavelet-based features could reflect the pathological
characters of the obstruction site in the upper airway. Figure 1 il-
lustrates the signal waveforms and corresponding scalograms of the
four types of SnS. The scalogram indicates the energy percentage
for each wavelet coefficient (the wavelet function here is ‘db10’1).
The scalogram is based on CWT, to analyse time and frequency dis-
tribution of SnS (cf. also [16]). The scalogram reveals the energy
distribution of the wavelet transformed signal corresponding to dif-
ferent scales of the decomposition process. From the scalogram,
one sees that, E type SnS shows more energy units at higher scales
(around 20) compared to the other three types. This means that, in
our set of samples, the SnS of type E contains more energy at a lower
frequency band compared with the other three types. The scalogram
also depicts that, the V type SnS has a higher energy content in the
lower and higher scales, which is similar to the O type. The T type
SnS shares more similarities with E type SnS both in the signal wave-
form in the time domain and the scalogram in the wavelet transform
domain.

Khushaba et al. proposed a wavelet-packet-based feature-
extraction algorithm and utilised it to classify EEG, EOG, and
ECG signals [15], where results showed that the extracted wavelet-
based features could achieve a classification accuracy of (95 % to
97 %) for different drowsiness levels. In this paper, we extend this
work into SnS classification and explore the most suitable wavelet
function for the feature set extraction. The wavelet packet trans-
form (WPT) was introduced by Coifman et al. [17], which aims
to reveal the links between multi-resolution approximations and
wavelets. The WPT can be understood as a tree of subspaces,
where V0,0 is the root node. In general notation, the signal space
Vj,k (j is the level of the decomposition process, and k is the sub-
band index) is decomposed into two orthogonal subspaces level by
level: Vj+1,2k and Vj+1,2k+1, namely, the ‘approximation space’
and the ‘detail space’ [18]. This decomposition process is done
by dividing an orthogonal basis Φj(t− 2jk)j,k∈Z from Vj,k into
two new orthogonal bases: Φj+1(t− 2j+1k)j,k∈Z from Vj+1,2k

and Ψj+1(t− 2j+1k)j,k∈Z from Vj+1,2k+1, respectively, where,
Φj,k(t) and Ψj,k(t) are wavelet functions [19]. WPT can reveal
the subband features from the given SnS data with the decomposi-
tion process, presented by Khushaba et al. [15]. A construction of
normalised filter bank energy is defined as:

EVj,k =

√∑
n(wj,k,n)2

Nk
, (1)

where wj,k represents the wavelet-packet transform coefficients
evaluated from the signal at the subspace Vj,k, and Nk is the number
of wavelet coefficients in the k-th subband; therefore, EVj,k denotes
the normalised bank filter energy in k-th subband with the j-th de-
composition level. Furthermore, the subband energy percentage is
defined as:

EVj =

∑
k

∑
n(wj,k,n)2∑Jmax

j=1

∑
k

∑
n(wj,k,n)2

. (2)

1The wavelet function names mentioned here and on follow-
ing are identical to the ones given in the Matlab Wavelet Toolbox
(http://www.mathworks.com/products/wavelet/).
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(a) Type V (b) Type O

(c) Type T (b) Type E

Fig. 1. Signal waveform and scalogram of VOTE typical SnS samples.

Subsequently, the variance, waveform length (the sum of the ab-
solute differences), and the entropy are calculated from the base by
Eq. (2). Additionally, all the energy-related features presented in
Eq. (1) and Eq. (2) are modified with a logarithmic operator. From
Eq. (1) we obtain 2Jmax+1 − 1 WPT energy related features and
with Eq. (2) we extract 4 × (Jmax + 1) features, where Jmax is
the maximum level for WPT decomposition (in our study it is set
to be 6; thus we obtain 155 descriptors). Motivated by the suc-
cessful performance achieved by our large scale feature extraction
toolkit, openSMILE [20], we apply 9 statistical functionals to the
above low-level descriptors (LLDs). In our feature extraction algo-
rithm, for each instance, the original SnS data are divided into frames
(each frame contains 64 ms with a 50 % overlap rate). Then, we cal-
culate the statistical values from among these frames and obtain a
complete attribute information per analysed instance. The detailed
process of this technique is described in [20]. We illustrate the basic
wavelet features and the statistical functions in Table 3. Among each
of these, the delta coefficients (velocity), and delta-delta coefficients
(acceleration) are computed; therefore, the total number of attributes
per feature vector is 155×9×3 = 4 185.

3. RESULTS AND DISCUSSIONS

3.1. Experimetal Setup

Due to the high popularity and performance of SVMs [21] in audio
event analysis, we choose them as our classifier for the experiments
to follow. The frequently-used and mature toolkit LIBSVM [22]
is used, and here we chose an SVM with a linear kernel. All pa-
rameters are set to the default values, which could achieve the best

Table 3. Basic wavelet features (LLDs) and applied statistical func-
tionals.

LLDs (155) Statistical functionals (9)

EVj,k (127) max, min, mean,
EVj (7) range, standard deviation,
Variance of EVj (7) slope, bias (linear
Waveform length of EVj (7) regression approximation)
Entropy of EVj (7) skewness, kurtosis

performance in our experiments. To make full use of our limited
database, we adopt a k-fold cross validation method (in this study,
k is 2), which uses subject-independent (adopted by Alshaer et al.
in recent OSA related study [23]) data groups as shown in Table 2.
The evaluation value – the WAR (weighted average recall, i. e., the
accuracy) and UAR (unweighted average recall, i. e., mean value
of WAR for each class of testing instances) – are all the mean val-
ues achieved across the 2-fold experiments. We need to note that
in the previous studies, WAR was normally used rather than UAR,
which can risk to ignore the fact that SnS data are natually imbal-
anced data. Therefore, we adopt both WAR and UAR together to
evaluate the performance of our proposed method in this study. All
the experiments and algorithms are implemented in the environment
of Matlab R2014b by MathWorks®.
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Table 4. Maximmun WAR and UAR of different wavelet functions.

Family Optimum WARmax [%] UARmax [%]

BiorSplines bior3.5 76.8 70.1
Coiflets coif1, coif5 77.0 (coif5) 68.9 (coif1)
Daubechies db3, db10 78.2 (db10) 71.1 (db3)
Dmeyer dmey 74.9 68.2
Haar haar 66.6 61.0
ReverseBior rbio1.5 76.4 69.7
Symlets sym3 76.1 71.2

3.2. Wavelet Function Selection

As discussed in Section 2.2, the WPT decomposition process is
based on Φj,k(t) and Ψj,k(t), which are called wavelet functions.
Different wavelet functions generate different descriptions for the
analysed signal within the decomposition process. We explore 7
classes of available wavelet functions (totally, 54 including family
members)1 in the WPT feature extraction. The results are shown
in Table 4. We observed that the ‘db10’ and ‘sym3’ function could
achieve the best WAR and UAR respectively for our sample set.

3.3. Comparison with Other Features

We compare the performance of our wavelet feature set with pop-
ular further feature sets frequently used in SnS data analysis. We
extract the formants (F1, F2, F3, and the corresponding amplitude
energy), MFCC (Mel-frequency cepstral coefficients, 1–13), power
ratio (PR800), energy ratio between the lower and higher spectrum
band at 800 Hz), crest factor, and fundamental frequency (F0) from
SnS and calculate the statistical values with the same approach de-
scribed in Section 2.2. For the detailed basic frame-based feature
extraction algorithm the reader is referred to [24], and [25]. Figure 2
shows that the proposed wavelet based feature set outperforms other
frequently-used features in our set of samples. Formants could reach
a relatively high WAR of 73.0 %; however, other widely used feature
sets can only achieve the WARs below 65 % and the UARs are all
below 60 %. Ng et al. indicated that formants could carry important
information on the upper airway structure variations [26]; therefore,
further studying the relationship between formant properties and the
physiological changes in the upper airway appears significant. F0,
MFCC, and power ratio features are all based on Fourier Transfor-
mation (FT) [27]. Compared to FT, the Wavelet Transformation is
more suitable to analyse non-stationary signals [17], due to its good
frequency resolution along with finite time resolution [15].

Note that, at this stage of our work, we put less emphasis on the
computational costs in our feature extraction phase. We can see that,
among the feature sets, our proposed wavelet feature set contains
a large feature dimension (4 185), considerably higher than others,
namely, formants (162), MFCC (351), power ratio (27), crest fac-
tor (27) and fundamental frequency (27). The classification perfor-
mance is our major variable of interest in this work. Table 4 and
Figure 2 demonstrate that, in our experiments, the average recogni-
tion performance of wavelet feature sets exceeds those of the other
sets of features.

Fig. 2. VOTE SnS classification WAR and UAR by different feature
sets in 2-fold cross validation.

4. CONCLUSIONS

In this study, we proposed a method based on WPT to extract wavelet
features from SnS data to classify VOTE SnS with a data-trained
SVM classifier. The labelled SnS data from 24 snoring subjects
were grouped into two subject-independent partitions. We trained
and tested our proposed classifier model with a 2-fold cross vali-
dation. Results showed that, with a suitable wavelet function, we
can achieve a WAR of 78.2 %, and a UAR of 71.2 %, which out-
performed other frequently-used features such as formants, MFCC,
power ratio, crest factor, and fundamental frequency. A limitation
of our study is that it is based on a relatively small cohort of sub-
jects. Even though the number of investigated acoustic events (snor-
ing episodes) is sufficient, the number of actual subjects is low. This
bears the risk of assessing the individual acoustic characteristics of
snoring subjects, rather than revealing features that are generally rep-
resentative for snore sounds of the different classes. Using data from
more patients can overcome this limitation. The performance of our
classifier for this four-class learning problem still can be be further
improved. We observed formants to be comparatively relevant for
classification of SnS while having a considerably lower dimension
(162) if compared to wavelet features (4 185). Therefore, a fusion
and feature reduction phase of wavelet features and formants could
be suitable to train a more robust classifier. Further, we could im-
prove the baseline by involving balancing and instance sub-sampling
training strategies.

5. RELATION TO PRIOR WORK

The WPT based feature extraction method is based on the algorithm
presented by Khushaba et al. [15], which was originally used for
classification of EEG, EOG, and ECG signals. We adopt the frame-
work of our efficient toolkit openSMILE [20] to enlarge the wavelet
feature set. This work is a further step in continuation of part of the
authors’ previous multi-feature analysis of OSA SnS [28] and the
SnS classification work in [29] and [25].
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