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ABSTRACT

We introduce a new learned descriptor for audio signals which is
efficient for event representation. The entries of the descriptor are
produced by evaluating a set of regressors on the input signal. The
regressors are class-specific and trained using the random regression
forests framework. Given an input signal, each regressor estimates
the onset and offset positions of the target event. The estimation con-
fidence scores output by a regressor are then used to quantify how
the target event aligns with the temporal structure of the correspond-
ing category. Our proposed descriptor has two advantages. First, it
is compact, i.e. the dimensionality of the descriptor is equal to the
number of event classes. Second, we show that even simple linear
classification models, trained on our descriptor, yield better accura-
cies on audio event classification task than not only the nonlinear
baselines but also the state-of-the-art results.

Index Terms— feature learning, audio event, recognition, struc-
tural encoding

1. INTRODUCTION
Nonspeech acoustic event detection and classification are important
problems of computational auditory scene analysis [1] and have re-
cently received great attention [2, 3]. However, compared to speech
recognition, which is mature, these problems are still in their infancy.

In general, the characteristics of audio events differ from those
of speech in the manner that they cover a much wider variety in fre-
quency content and duration. Nevertheless, they are similar in one
perspective. Speech exposes temporal structure, i.e. it is possible
to decompose words into their constituent phonemes. Likewise, an
audio event can be decomposed into atomic units of sound [4, 5].
For example, the sound of “using water tap” event may further be
decomposed into the sounds of the water running in the faucet, then
pushing into the air, and finally splashing into the sink. As a result,
the patterns of unit sequences can be used as a signature to distin-
guish different sound events. However, unlike phonemes in speech,
it is not clear how to design or discover the sound unit dictionary
to encode all sound events. Furthermore, comparing sequential pat-
terns under high intra- and inter-category variations of audio events
is not a trivial task.

Regarding audio event representation, besides widely used
hand-crafted descriptors such as mel-scale filter banks [6], log fre-
quency filter banks [7], and time-frequency features [8], learned
descriptors are becoming more and more common. They range
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from codebook-based representations (e.g. bag-of-words models
[9, 10], sparse coding [11], non-negative matrix factorization [12],
and examplar-based coding [13]), to sharing features [14], deep
features [15, 16], and speech-based generic features [17]. Recently,
structural information from audio events has been shown essential
for the recognition task [10, 18]. There have been several attempts
to capture these types of information. An audio event can be consid-
ered as a sequence of atomic units of sound [4, 19] and the pattern
of occurrences is then used as an event signature. Alternatively, the
temporal configuration can also be encoded using self-organizing
maps [18], pyramid bag-of-words models [10], and audio phrases
[20].

In this work, we aim to quantify the temporal structure of an
event category as a scalar, which allows one to justify how an event
aligns to the temporal configuration of an event category. For in-
stance, how much a “door knock” instance aligns with the temporal
structure of “chair moving” class. Furthermore, it facilitates numer-
ical measurements of the similarity between events, such as for the
classification task. We propose to address this by employing a re-
gression model which takes the audio signal as input and provides
estimates for the event onset and offset positions as probability den-
sity functions. Instead of using the regressor as in [21, 22], we con-
sider the predicted confidence scores of the regressor as structural
measures. Further, we propose a global descriptor which is obtained
by evaluating a bank of class-specific regressors on the target event.
The responses of the regressor bank quantify the alignment of the
event to the structures of different event classes, and hence, encode
the shared features between different classes.

The proposed descriptor is compact since the number of entries
equals the number of event classes. Furthermore, using the proposed
descriptor, we obtain state-of-the-art accuracy on event classification
even with simple linear classification models. The intuition behind
our proposed descriptor is that it provides a semantically rich repre-
sentation of an audio event by measuring how it aligns to the struc-
ture of different event classes. Thus, a linear classifier trained on this
representation will express an event class as a linear combination of
the structural alignments.

2. LEARNING DECISION FORESTS REGRESSORS
2.1. Training
In this section, we describe how to learn a class-specific regression
model for event onset and offset estimation. The regressor is learned
as in [21, 23] using the random decision forests framework [24]. We
first decompose the training audio signals to obtain the set of audio
segments S : {sn = [xn,dn];n = 1 . . . NS}, where xn ∈ RM is
the feature vector for the segment n, and M is the dimensionality.
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dn = [d+n , d
−
n ] ∈ R2

+ is the distance vector where d+n and d−n denote
the distances from n to the first segment (e.g. the onset) and the
last segment (e.g. the offset) inclusive of the corresponding event
respectively.

The forest model consists of T binary decision trees. Each tree
is constructed as follows. We randomly sample and use a subset of
audio segments from S. Starting from the root node with the full set
of audio segments, we randomly generate a pool of binary tests. We
then choose an optimal test to divide the data set into two subsets,
each is assigned to one of the child nodes. This splitting process is
repeated recursively to grow the tree. The growing stops at a leaf
node when either a maximum depth Dmax of the tree is reached or a
minimum number Nmin of audio segments are left. At a leaf node,
the distances to the event onset and offset of its audio segments are
modeled. In this manner, the entire forest is constructed.

The binary tests at the split nodes are given by

tr,τ (x) =

{
1, if xr > τ
0, otherwise. (1)

Here, xr denotes the value of x at a random selected feature channel
r ∈ {1, . . . ,M}. τ is a random threshold generated in the range of
xr . Hereafter, the best test is adopted to minimize the total distance
variation:

t∗r,τ = argmin
tr,τ

(∑
i

∥∥d left
i − d̄ left

∥∥2
2

+
∑

i

∥∥d right
i − d̄ right

∥∥2
2

)
,

(2)
where d̄ denotes the mean distance vector of the corresponding sub-
set indicated by the superscript.

The onset and offset distances of the audio segments that arrived
at a leaf are modeled as Gaussian distributions N+(d; d̄+,Σ+) and
N−(d; d̄−,Σ−), respectively. Here, (d̄+,Σ+) and (d̄−,Σ−) de-
note the means of variances of onset and offset distances of the audio
segments.

2.2. Event onset and offset estimation
Given a test audio segment xn′ at the time index n′, we want to
estimate where the onset and offset should be. Input xn′ into a tree,
at every split node, the stored binary question is evaluated, directing
xn′ to the right or left child until ending up at a leaf node. The
estimates for the onset and offset positions are then given by:

p+(n
∣∣xn′ , d̄+,Σ+) = N+(n;n′ − d̄+,Σ+), (3)

p−(n
∣∣xn′ , d̄−,Σ−) = N−(n;n′ + d̄−,Σ−). (4)

The interpretation for (3) and (4) is that we shift the Gaussian distri-
butionsN+(d; d̄+,Σ+) at d̄+ backward from n′ andN−(d; d̄−,Σ−)
at d̄− forward from n′. The estimation by the forest is computed by
averaging over all trees:

p+(n
∣∣xn′) =

1

T

∑T

t=1
p+(n

∣∣xn′ , d̄+t ,Σ
+
t ), (5)

p−(n
∣∣xn′) =

1

T

∑T

t=1
p−(n

∣∣xn′ , d̄−t ,Σ
−
t ). (6)

3. LEARNING COMPACT STRUCTURAL DESCRIPTORS
WITH A BANK OF REGRESSORS

3.1. Regressors for structural measurements
Suppose that we have learned a regressorRc for a target event class
c as in Section 2. Given an audio signal, we decompose it into a
sequence of segments

(
xn;n = 1 . . . N

)
. The regressor takes an

audio segment x as input and makes estimates for the event onset
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Fig. 1. Illustration of event onset and offset estimation. The total
estimation confidence scores f+(n) and f−(n) for the target event
onset and offset are computed by summing the individual scores ob-
tained by three segments xi, xj , and xk. We ignored the class label
here for simplicity.
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Fig. 2. Regressor bank for feature extraction. The local feature
matching is performed by the multi-class classifier M. A class-
specific regressor Rc is trained using training samples of class c.
The bank of these regressors is then used as feature extractors to
produce a semantically rich descriptor of the input audio event.

and offset positions in terms of the probability density functions
p+(n|x, c) and p−(n|x, c) given in (5) and (6), respectively. The
respective onset and offset estimation confidence scores f+

c,x(n) and
f−c,x(n) are then computed by

f+
c,x(n) = p+(n, c|x) = P (c|x)p+(n|x, c), (7)

f−c,x(n) = p−(n, c|x) = P (c|x)p−(n|x, c). (8)

Here, P (c|x) is the probability that the local feature x matches to
event class c. The estimates for all segments read

f+
c (n) =

∑N

i=1
f+
c,xi(n), (9)

f−c (n) =
∑N

i=1
f−c,xi(n). (10)

The estimation is illustrated in Fig. 1. Via the learned regression
model, the local features vote for the boundary of the event. By
this, we implicitly model the “shape” of the audio event, e.g. its
temporal extent, as a constellation of local features. Since we intend
to estimate the onset and offset positions separately, the regression
confidence scores can be reasonably considered as the measures for
forward and backward structures of the event.

Finally, we average the maximum values of the confidence
scores to produce the structural descriptor φc of the event class c
measured on the input audio event:

φc =
1

2

(
max
n

(
f+
c (n)) + max

n

(
f−c (n))

)
. (11)

3.2. Regressor bank descriptor
In general, the confidence scores can be compared against a thresh-
old for recognition. Good performance has been demonstrated in
many applications [22, 24, 21, 23]. However, simple thresholding
will ignore the sharing of features between different classes which is
important to boost the performance [25, 14].
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We therefore propose stacking the regressors in a bank as in
Fig. 2. The regressors then play the role of a mid-level feature
extractor to produce an intermediate representation for the audio
event. In other words, we transform a sequence of audio segments(
xn;n = 1 . . . N

)
of the input signal into a compact descriptor

φ = [φ1, . . . , φC ]T ∈ RC+. Here, C is the number of event cate-
gories of interest and φ is given in (11). As a result, the audio event
is embedded in the space spanned by the responses of the regressors.

The descriptor can be interpreted as how the audio event aligns
to the temporal configurations of different event classes modeled by
the regressors. Since the regressor bank features are semantically
rich representations, even simple linear classification models trained
on our descriptor achieve good classification accuracies.

4. EXPERIMENTS
4.1. Experiment setup
Parameters. The audio signals were downsampled to 16 kHz. Each
audio event was decomposed into a sequence of 50 ms segments with
10 ms overlap. We also conducted experiments with various segment
sizes (30, 40, . . . , 100 ms) to see how the performance changes.

We trained the regression models with ten trees each. We ran-
domly sampled 50% of the training set to learn a tree. Furthermore,
we set the number of binary tests generated at a split node to 20,000,
the maximum depth to Dmax = 12, and the minimum number of
audio segments for early termination to Nmin = 20. For local fea-
ture matching, we trained a classifierM using random forests [26]
with 200 trees. For the purpose of classification, an audio segment
was labeled with the label of the event from which it originated.

Low-level features to represent audio segments. Although al-
most any arbitrary features can be used to describe an audio segment,
we used a set of very basic acoustic features: 16 log-frequency filter
bank coefficients [7], their first and second derivatives, zero-crossing
rate, short-time energy, four sub-band energies, spectral centroid,
and spectral bandwidth. The overall feature dimension is 53.

Classification models. Our final classification systems were
trained on the bank-of-regressors (BoR) descriptors extracted from
the training audio events using one-vs-one standard SVM (BoR-
linear) and χ2-kernel SVM (BoR-χ2). To extract the descriptors
for the training events, we conducted 10-fold cross validation on the
training data. We noticed that it is unnecessary to conduct cross-
validation on the regression forests but can simply employ those
trained with the whole training data. It turned out that we only need
to do cross-validation for the classifierM used for feature matching.

An entry φc of a descriptor was normalized to φc
maxφc

, where
maxφc is the maximum value of φc in the training events. The de-
scriptors are further `1-norm normalized. The hyperparameters of
the SVMs were tuned via leave-one-out cross-validation.

Baseline systems. We compare performance of our systems
with three baseline systems:

1. Bag-of-words system (BoW). We implemented a BoW model
which has been widely used for audio event recognition [9,
27, 10]. Using this model, an audio event is represented by a
histogram of codebook entries.

2. Pyramid bag-of-words system (PBoW). We extracted BoW
descriptors on different pyramid levels [28] to encode tem-
poral structure of the audio events. This approach has re-
cently achieved state-of-the-art results on different bench-
mark datasets [10].

3. Max voting system. This system assigns a test audio event the
class label that corresponds to the regressor with maximum
response in the bank. It is equivalent to the one proposed in
[21] if we consider it for classification purpose only.

For the BoW and PBoW baselines, we used k-means for code-
book learning. The entries were obtained as the cluster centroids,
and codebook matching was based on Euclidean distance. We used
different codebook sizes (50, 75, . . . , 250). In particular, we tried
2, 3, and 4 pyramid levels for the PBoW systems. In addition to
standard SVM, nonlinear SVMs with RBF, χ2, and histogram inter-
section (hist. for short) kernels were also implemented. All the hy-
perparameters were tuned by cross-validation. Finally, the systems
with the best performance were compared with our systems.

Datasets. We tested our approach on the four following datasets
with different degrees of complexity:

1. ITC-Irst [31]. It consists of 741 audio events of 16 cate-
gories. We evaluated on twelve categories and used nine first
recording sessions for training and three remaining sessions
for testing as publicly available settings [31, 14]. Only single-
channel data named TABLE 1 was used.

2. UPC-TALP [32]. For this dataset, we used a single channel
(channel 10) of 8 recordings with isolated events. There are
1,418 instances of eleven categories. Following [29], we al-
ternatively used seven sessions for training and the remaining
session for testing. The average accuracy is finally reported.

3. Freiburg-106 [33]. There are 1,479 audio human activities
of 22 categories. As in [33, 20], the test set contains every
second recording of a class, and the training set contains all
the remaining recordings.

4. NAR [30]. Overall, it consists of 852 sound signals of 42
classes. Particularly, it includes some speech categories, and
they are also treated as audio events in general. As in [30], we
randomly split the data into ten parts and conducted 10-fold
cross-validation. The average accuracy is then reported.

4.2. Experimental results
Responses of regressor bank. For illustration, we show in Fig. 3
the normalized responses of the regressor bank on typical examples
of different categories of the ITC-Irst dataset. Note that we padded
zeros to the beginning and end of each sequence to make it five
times longer before regression to account for event duration vari-
ations. It can be seen that some examples (e.g. “paper wrapping”,
“phone ring”) are very discriminative, so that the max voting scheme
should be adequate for recognition. However, it would yield wrong
recognition on many other classes (e.g. “door slam”, “key jingle”).
Our model overcomes this difficulty by effectively discriminating on
combinations of shared features.

Performance comparison. The classification performances
achieved by different systems are summarized in Table 1. For the
BoW and PBoW baselines, the χ2 and hist. kernels were found most
appropriate. This is expected since they are based on histogram rep-
resentations. On the other hand, a pyramid level of two is optimal
for the PBoW baselines. However, it is worth emphasizing that
performances of the baselines are not consistent. For instance, on
the ITC-Irst dataset, the best BoW is with codebook size of 50 while
it is 200 for the Freiburg-106 dataset. Similarly, those for PBoW
are 225 and 200, respectively. It is also noticed that BoW performs
better than PBoW on the ITC-Irst and UPC-TALP datasets, but the
opposite results are seen on the Freiburg-106 and NAR datasets.
On another hand, as expected, by taking into account the sharing of
features between different classes, our systems significantly boost
the classification performance to a higher level compared to the
simple maximum voting strategy. We also list the best performance
previously reported for those datasets.

From Table 1, it can be seen that our BoR-χ2 systems consis-
tently outperform all baselines and state-of-the-art systems on three
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1 - door knock 2 - door slam 3 - steps 4 - chair moving 5 - spoon cup jingle 6 - paper wrapping

7 - key jingle 8 - keyboard typing 9 - phone ring 10 - applause 11 - cough 12 - laugh

Fig. 3. ITC-Irst dataset. Responses of regressor bank on audio events of different classes. Each plot is associated with the class identity
numbers and the class names. For an event of class c, the responses of the regressorRc are located in the dash-line boxes, the onset score on
one row followed by the offset score on the other row.

Table 1. Overall classification performance. Comparison of classification accuracies obtained by different systems. The results on the
Freiburg-106 dataset are reported on f-score (%) to consent with the work in [20].

Dataset BoW PBoW Max
voting Best reported Our systems

BoR-linear BoR-χ2 BoR+
ITC-Irst 97.3 96.6 95.9 97.3 [14] 97.9 97.9 99.3
UPC-TALP 96.6 96.5 94.5 87.6 [29] 95.8 96.7 96.8
Freiburg-106 96.6 96.8 92.3 98.9 [20] 97.2 97.8 98.1
NAR 94.8 96.4 92.6 97.0 [30] 96.8 97.6 97.6
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Fig. 4. Variation of segment size. Classification accuracies as func-
tions of audio segment size.

out of four datasets. Overall, the improvements over the best com-
petitors (e.g. the baselines or the state-of-the-art systems) are 0.6%,
0.1%, and 0.6% with respect to the ITC-Irst, UPC-TALP, and NAR
datasets. Furthermore, even with simple linear classifiers, e.g. the
BoR-linear systems, we are able to achieve better performance than
the non-linear baselines on the ITC-Irst, Freiburg-106, and NAR
datasets. We would like to point out that the standard SVMs are very
efficient to train and evaluate compared to nonlinear baseline mod-
els. On individual classification accuracies, our BoR-χ2 systems
achieve equivalent or higher accuracies on 10 out of 12, 7 out of 11,
20 out of 22, and 33 out of 42 categories compared to all baselines for
ITC-Irst, UPC-TALP, Freiburg-106, and NAR datasets, respectively.
The single exception is the Freiburg-106 test, where our previously
published method [20] is able to perform very slightly better than the
current system. It is worth pointing out that the BoR descriptors are
significantly more compact than the high-dimensional audio phrases
used in [20].

Varying the size of audio segments. In this experiment, we
studied how the classification accuracy of the proposed method
changes as a function of the audio segment size. We performed this
analysis using different sizes in the set (30, 40, . . . , 100 ms) and
reported the results in Fig. 4. One can see that the performance is
quite stable, except for the ITC-Irst case. This can be explained by
its small number of test samples. On average, our BoR-χ2 systems
obtain 98.2±0.6%, 96.5±0.2%, 98.1±0.3%, and 97.4±0.4% on
ITC-Irst, UPC-TALP, Freiburg-106, and NAR datasets, respectively.

Combination with unstructured features. Our BoR descrip-
tor works well for event categories which clearly expose structure.
On the contrary, it appears to be slightly worse on weakly structured
events, such as those with impulse-like signals (e.g. “door slam” in
the ITC-Irst dataset). For those kinds of events, unstructured fea-

tures (like bag-of-words) tend to yield better results. It is therefore
reasonable to somehow combine our structural descriptor with an un-
structured descriptor. For example, our experiment shows improve-
ments of 0.7% and 0.2% on the ITC-Irst and Freiburg-106 accura-
cies, respectively, compared to the BoR-χ2 system when combining
the BoR descriptor with the bag-of-words features in the BoW base-
lines. However, it is quite costly to build a second system for com-
bination. Alternatively, we exploit the random forest classifier M
used for feature matching to form a compact unstructured descriptor
at very little extra computational cost.

For an event decomposed into a sequence of N audio segments
(xn;n = 1, . . . , N), we obtained an unstructured descriptor de-
noted as ϕ = [ϕ1, . . . , ϕC ]T ∈ RC+ where

ϕc =
1

N

∑N

n=1
P (c|xn). (12)

The vector ϕ is then `1-norm normalized. Different descriptors are
combined using an extended Gaussian kernel [34]:

K(ei, ej) = exp
(
−
∑

k∈{φ,ϕ}

1

Ak
D(eki , e

k
j )
)
, (13)

where D(eki , e
k
j ) is the χ2 distance between the audio events ei and

ej with respect to the k-th channel. Ak is the mean value of the
χ2 distances between the training samples for the k-th channel. For
classification, we learned a nonlinear SVM with the kernel K de-
fined in (13). It leads to improvements of 1.4%, 0.1%, 0.3% on
the ITC-Irst, UPC-TALP, and Freiburg-106 datasets, respectively, as
shown for the BoR+ systems in Table 1. This simple fusion approach
could in future be augmented with methods such as multiple kernel
learning frameworks.

5. CONCLUSIONS
We have presented a new structural descriptor for efficient audio
event classification. It focuses on the learning of a mid-level rep-
resentation that enables us to measure how an audio event lines up
with temporal structures of different event categories of interest. The
temporal structures are modeled by class-specific regressors which
are based on a random decision forest framework. Our mid-level fea-
tures are produced by evaluating a set of pre-trained regressors over
the input audio event. Experiments on four benchmark datasets show
the efficiency of our descriptor in terms of classification accuracy.
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