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ABSTRACT

For single-microphone noise reduction, a minimum variance distortion-
less response (MVDR) filter has been proposed recently. This filter
takes the speech correlations of consecutive time frames into account and
achieves impressive results in terms of speech distortions even in a blind
implementation where we only have access to the noisy speech signal.
However, compared to conventional approaches less noise reduction
is achieved. Therefore, we propose to combine the single-microphone
MVDR with a Wiener post-filter as the minimum-mean-square error op-
timal solution when multiple time frames are considered. We propose to
pre-train the required interframe coherence matrices of the interferences
for a large database, while speech correlations and interference power
spectral densities are estimated online. In an experimental study based on
instrumental measures, the proposed approach achieves a good trade-off
between a single-channel Wiener filter and a multi-frame MVDR.

Index Terms— Speech enhancement, interframe correlation,
MVDR, post-filter, Wiener filter

1. INTRODUCTION

Most speech communication systems like mobile phones or hearing
aids are affected by ambient noise. The quality and intelligibility of
speech decreases, especially at low signal-to-noise ratios (SNR). Noise
reduction algorithms intend to suppress such additive noise. Generally,
in a single-microphone scenario, noise reduction algorithms can improve
the perceptual quality of speech while improving intelligibility remains
difficult. This is because noise reduction is often accompanied by
distortions rendering processed speech less intelligible [1].

Single-channel noise reduction algorithms are often formulated in the
time-frequency domain based on the short-time Fourier transform (STFT).
In order to obtain an estimate of the clean speech STFT coefficients,
a multiplicative gain function is applied to the noisy speech signal at
each time-frequency point. Examples are the single-channel Wiener
filter (WF) gain [2], the minimum-mean-square error (MMSE) based
amplitude estimator [3] and the MMSE log-amplitude estimator [4]. All
these approaches assume that adjacent time frames are uncorrelated and
that each time-frequency point can be processed independently. However,
it is well known that speech is highly correlated over time and frequency.
In the STFT domain, interframe correlations (IFC) result both from signal
correlations and overlapping spectral analysis frames. While the Fourier
transform generally reduces the correlation of signal samples, neighbor-
ing bands remain correlated [5]. Hence, it may be reasonable to also take
spectral correlations into account. Here, we will focus on the IFC.
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Benesty and Huang [6] [7] exploit the IFC and derived a multi-frame
Wiener filter (MFWF) and a multi-frame MVDR (MFMVDR) finite
impulse response (FIR) filter. For this, the current time frame of a signal
as well as the previous frames are used. This frame array is similar
to a multimicrophone system since each frame can be interpreted as a
microphone input.

In [6] [7], the MFMVDR filter achieves an extraordinary perfor-
mance with almost no speech distortions also because the authors evaluate
their algorithms with an oracle estimate of the speech IFC. Schasse
and Martin [8] derived a maximum likelihood (ML) estimator for the
speech IFC and show that the instrumentally predicted speech quality
and intelligibility can be improved also in a blind setup where only
access to the noisy speech signal is available. However, it is known from
microphone arrays that the MVDR filter often does not provide sufficient
noise reduction [9] which is also the case for the MFMVDR with blindly
estimated parameters. Inspired by [9], we add the WF as post-filter to
the MFMVDR as this combination is MMSE optimal. We propose to
pre-train the interframe coherence matrices of typical interferences offline
for a wide range of noise and speech sources while speech correlations
and interference power spectral densities are estimated online. The
evaluation of the proposed MFMVDR+WF takes place in terms of PESQ
[10] and STOI [11].

The paper is structured as follows. In the next sections we summarize
the MFMVDR filter proposed in [6] [7] and derive the MFMVDR+WF.
In Section 4 and 5, we evaluate the algorithms in a blind implementation
given only the noisy speech signal. We conclude our work in Section 6.

2. MULTI-FRAME MVDR FILTER

In this section, we first summarize the interframe signal model and the
MFMVDR filter presented in [6] [7].

We assume that a speech signalX(k,m) is corrupted by an additive
noise V (k,m) in the STFT domain. The indexes k and m denote the
frequency bin and time frame, respectively. It is assumed that the speech
and noise processes are uncorrelated and thatX(k,m) and V (k,m) are
complex-valued, zero-mean random variables. The complex spectral
noisy observation Y (k,m) is thus given by

Y (k,m)=X(k,m)+V (k,m). (1)

The estimate of the clean speech spectral component X(k,m) is
obtained by applying an FIR filterH(k,m,l) of order L−1 to the noisy
speech signal at each time-frequency point as

X̂(k,m)=

L−1∑
l=0

H∗(k,m,l)Y (k,m−l) (2)

=hH(k,m)y(k,m). (3)
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Here, L is the number of consecutive time-frames, ∗ indicates the
complex-conjugate operator and H the hermitian operator. The vectors
h(k,m) and y(k,m) contain the time-varying filter coefficients and the
last L−1 noisy speech samples, respectively, i.e,

h(k,m)=[H(k,m,0), H(k,m,1), ..., H(k,m,L−1)]T , (4)

y(k,m)=[Y (k,m), Y (k,m−1), ..., Y (k,m−L+1)]T .

The superscript T denotes the vector transpose. Note that a conventional
multiplicative gain can be realized with L=1.

According to equation (1), the L-dimensional vector y(k,m) can be
formulated by

y(k,m)=x(k,m)+v(k,m), (5)

where the clean speech vector x(k,m) and the noise vector v(k,m)
are similarly defined as y(k,m) in (4). In order to take the speech
IFC into account, the vector x(k,m) is decomposed into correlated and
uncorrelated components with respect to the desired signal X(k,m).
Thus, equation (5) can be rewritten as

y(k,m)=γx(k,m)X(k,m)+x′(k,m)+v(k,m), (6)
=γx(k,m)X(k,m)+n(k,m). (7)

Here, the vector x′(k,m) represents the speech components uncor-
related to the local speech coefficients X(k,m). Since we consider
x′(k,m) as an interference, we replace x′(k,m)+v(k,m) by n(k,m)
as the undesired signal vector in (7). The term γx(k,m)X(k,m) in-
dicates the correlated speech samples, with the speech IFC coefficient
vector γx(k,m) defined by the normalized speech correlation vector
ΦxX(k,m)=E[x(k,m)X∗(k,m)], as

γx(k,m)=
E[x(k,m)X∗(k,m)]

E[|X(k,m)|2] =
ΦxX(k,m)

φX(k,m)
. (8)

The operatorE[·] denotes the expectation and φX=E[|X(k,m)|2] the
speech power spectral density (PSD). Due to the normalization, the first
element of vector γx(k,m) is always 1 as X(k,m) is obviously fully
correlated with itself. Hence, the first element of the uncorrelated speech
vector x′(k,m) is 0.

Based on the definition of (3) and (7) the MFMVDR filter [6] [7]
is given by

hMFMVDR(k,m)=
Φ−1

yy (k,m)γx(k,m)

γH
x (k,m)Φ−1

yy (k,m)γx(k,m)
. (9)

This filter minimizes the mean-squared error of the filtered undesired
signal n(k,m) while the correlated speech components are not distorted.
Here, Φyy(k,m)=E[y(k,m)yH(k,m)] denotes the correlation matrix
of the noisy speech y(k,m).

In analogy to multi-microphone algorithms, the clean speech
IFC γx(k,m) acts as a steering vector. The main difference is that
γx(k,m) needs to be determined for each time-frame m, while in
multi-microphone speech enhancement the steering vector reflects the
spatial location of the target and is typically more stationary.

3. MULTI-FRAME MVDR WITH POST-FILTER

Similar as for multi-microphone beamforming algorithms, the multi-
frame MVDR filter often does not provide sufficient noise reduction
in a blind implementation due to reverberation, diffuse noise and/or
estimation errors [9]. Therefore, we propose to add a post-filter to
the single-channel output of the MFMVDR in order to achieve more
noise reduction while keeping speech distortions low. We show that,
as in the multi-microphone case [9], the MMSE optimal post-filter is

the single-channel WF. For a better readability, we omit the time and
frequency indexesm and k for the derivation.

Minimizing the mean-square error between the desired signal
X(k,m) and the estimated desired signal X̂(k,m) leads to the MFWF
[7], given by

hMFWF=Φ−1
yy ΦyX. (10)

Here, ΦyX=E[yX∗] is the cross-correlation vector between the noisy
speech vector y and the desired signalX. In contrast to the MFMVDR,
the MFWF does allow for speech distortions.The resulting filter may lead
to more noise reduction but also to more speech distortions compared
to the MFMVDR.

Assuming that the desired speech and undesired signals are uncor-
related, the cross-correlation ΦyX can be replaced by ΦxX . Since the
speech IFC γx depends on the correlation vector ΦxX in (8), the MFWF
can be rewritten as

hMFWF=φXΦ−1
yy γx. (11)

Further, we apply Φyy = Φxx + Φnn with Φxx and Φnn

as the speech and undesired signal correlation matrices, as well as
Φxx=φXγxγx

H . As a result, we obtain

hMFWF=φX
(
φXγxγx

H+Φnn

)−1

γx. (12)

Applying the Woodbury matrix identity (A+UCD)−1 =A−1−
A−1U

(
C−1+DA−1U

)−1
DA−1 and after rearranging the terms, the

final result is given by

hMFMVDR+WF=
Φ−1

yy γx

γx
H Φ−1

yy γx︸ ︷︷ ︸
hMFMVDR

φX

φX+
(
γx
HΦnn

−1γx

)−1︸ ︷︷ ︸
hWF

. (13)

This shows that the MFWF as the MMSE solution can be factorized into
the MFMVDR and the single-channel WF. The Wiener filter operates
on the output of the MFMVDR, where

(
γx
HΦnn

−1γx

)−1
denotes the

undesired signal PSD φNout at the output of the MFMVDR [2]. This
quantity can be determined by filtering the undesired correlation matrix,
i.e., φNout =E[|hMFMVDR

Hn|2]=hHMFMVDRΦnnhMFMVDR. We obtain

hMFMVDR+WF(k,m)=hMFMVDR(k,m)
φX(k,m)

φNout(k,m)+φX(k,m)
. (14)

The MFMVDR is designed to avoid speech distortions while the Wiener
post-filter minimizes the mean-square error between the filtered single-
channel output of the MFMVDR and the clean speech signal. Thus, the
hMFMVDR+WF(k,m) is capable to reduce the undesired signal components
more strongly than the MFMVDR. However, speech distortions may be
introduced, since the WF affects the speech signal as well. This effect
can be mended by applying a lower limit as

h̃WF=max(hmin,hWF). (15)

4. PROPOSED PARAMETER ESTIMATION

We assume to have only access to the noisy speech signal such that we
need to blindly estimate all required parameters.

Both the MFMVDR in (9) and the proposed MFMVDR+WF in (14)
depend on the inverse of the noisy correlation matrix Φyy(k,m) and
the clean-speech IFC γx(k,m). The quantity Φyy(k,m) is estimated by
recursive smoothing, i.e.,

Φ̂yy(k,m)=αΦ̂yy(k,m−1)+(1−α)y(k,m)yH(k,m), (16)

where the smoothing factor is experimentally set to α=0.8. The first
element of the matrix Φ̂yy(k,m) corresponds to the noisy speech PSD
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φ̂Y (k,m), i.e., φ̂Y (k,m) =
[
Φ̂yy(k,m)

]
1,1

. To compute the inverse

of Φ̂yy(k,m) we first perform a matrix regularization to improve the
robustness of the filter computation as

Φ̂−1
yy (k,m)=

Φ̂yy(k,m)+
δregtr

[
Φ̂yy(k,m)

]
L

IL×L

−1

(17)

with a regularization parameter δreg =0.04 as in [8]. The operator tr[·]
denotes the trace of a square matrix and IL×L is the identity matrix of
size L×L.

For the clean speech IFC we employ the proposed ML estimator for
γx(k,m) in [8] based on the assumption that the noise and speech IFC
vectors follow multivariate Gaussian distributions. This ML estimator
is given by

γ̂xML(k,m)=
φ̂Y (k,m)

φ̂X(k,m)
γ̂y(k,m)+

φ̂V (k,m)

φ̂X(k,m)
µγv(k,m). (18)

Here, γ̂y(k,m) indicates the noisy IFC and is defined similar to the

speech IFC in (8). Note that ΦyY (k,m)=
[
Φ̂yy(k,m)

]
:,1

, where [·]:,1
denotes the first column of a matrix. The parameter µγv(k,m) is the
mean of the noise IFC. It is given by the frame overlap and the analysis
window function [8] [12].

To estimate the speech PSD φX(k,m), it is assumed that X(k,m)
and V (k,m) follow zero-mean Gaussian distributions. Thus, φX(k,m)
can be estimated by the ML estimate for φX(k,m) [2] [8],

φ̂X(k,m)=max
[
φ̂Y (k,m)−φ̂V (k,m),0

]
. (19)

As in [8], the noise power φV (k,m) is obtained by the simple noise PSD
estimator proposed in [13]

φ̂V (k,m)=min
[
φ̂Y (k,m),φ̂V (k,m−1)

]
(1+ε). (20)

The parameter ε controls the maximum speed and is set to 5 dB/s as in [8].
In order to implement the proposed MFMVDR+WF, the power of the

undesired signal at the output of the MFMVDRφNout(k,m) is required. It

is estimated by filtering the undesired correlation matrix Φnn(k,m), i.e.,

φNout(k,m)=hHMFMVDR(k,m)Φnn(k,m)hMFMVDR(k,m). (21)

For this, we proposed to train the coherence Γn(k,m)= Φnn(k,m)
[Φnn(k,m)]1,1

as the normalized IFC matrix of the undesired signal over a dataset. The
matrix Φnn(k,m) is defined by the superposition of the correlation
matrices of the noise Φvv(k,m) and the uncorrelated speech components
Φx′x′(k,m), i.e., Φnn=Φx′x′+Φvv. Since we know the speech and
noise signals during the training perfectly, the interference signal can be
calculated by

x′(k,m)=x(k,m)−γx(k,m)X(k,m). (22)

Thus, Φ̂x′x′(k, m) and Φ̂vv(k, m) can be estimated similar to
Φ̂yy(k,m) in (16). We average the correlation matrices of the un-
desired signal over all data. To avoid scaling problems, the averaged
Φnn(k,m) is normalized to the first element of the matrix and we
obtain the coherence matrix Γn(k,m). In the online processing, the
trained Γn(k,m) is applied and needs to be scaled by the signal power
φ̂N(k,m)= φ̂X′(k,m)+φ̂V (k,m) to obtain an estimate of the current
Φ̂nn(k,m). However, since the speech IFC in (8) implies that the first
element of the vector is always 1, [x′(k,m)]1;1 in (22) is accordingly 0.

As a result, the PSDφX′(k,m)=E
[
|[x′(k,m)]1;1|

2
]

is 0 as well and we

can replace φ̂N(k,m) by φ̂V (k,m). Thus, the correlation matrix of the
undesired signal vector is obtained by Φ̂nn(k,m)=Γn(k,m)φ̂V (k,m)
and φNout(k,m) can be finally estimated by (21).

5. EVALUATION

In this section, we compare the proposed MFMVDR+WF to the con-
ventional single-channel WF (L=1) and the MFMVDR presented in
[6] [7] with the proposed parameter estimation from Section 4. In our
experiments, we also found the previously described sensitivity of the
MFWF in (11) to estimation errors of the speech and noise PSD as in [8].
However, we now show that the proposed decomposition of the MFWF
into MFMVDR and WF does not suffer from this sensitivity.

For the evaluation we employ 120 sentences from the TIMIT
database [14] spoken by different speakers (6 male, 6 female). As noise
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(c) Results obtained with the WF (L=1)
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(d) Results obtained with the MFMVDR [8]
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(e) Results obtained with the MFMVDR + WF

Fig. 1. Spectrograms of the clean speech (a), noisy speech (b), and the resulting processed speech (c)-(e) with blindly estimated parameters from a
female speaker corrupted by modulated white Gaussian noise at 5 dB SNR. The Wiener filter in (c) clearly decreases the background noise but also
introduces speech distortions. The MFMVDR in (d) results in less speech distortions but also less noise reduction. In panel (e), the proposed approach
combines the benefits of (c) and (d), speech distortions are less than in (c) and noise reduction is more than in (d).
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signals, we use white Gaussian noise, modulated white Gaussian noise
with a modulation frequency of 0.5 Hz and babble and traffic noise. The
sampling rate is set to fs=16 kHz. As the spectral analysis and synthesis
window, we employ a square-root Hann window. Further, for the multi-
frame approaches we use a high temporal resolution with a frame length
of 4 ms and an overlap of 75 % to increase the exploitable IFC. The num-
ber of consecutive time-frames is set toL=18 as in [8], resulting in 21 ms
of data employed in each filtering operation. Also in our experiments this
value is a good compromise between performance and computational
complexity. In order to ensure a fair comparison, for the WF (L=1) we
apply a frame length of 21 ms. The overlap is set to 50 %. Moreover, the
WF and Wiener post-filter were limited to hmin=−17 dB in (15). For the
WF (L=1), an estimate of the speech PSD φx(k,m) is obtained using
the decision-directed approach with a smoothing parameter of 0.98 [3].

For the trained coherence Γn(k,m) we used a dataset of 60 speech
files and 3 noise types at -5, 0 and 5 dB. We make sure that the training
data differs from the evaluation data. As noise signals, we used pink
noise, office noise and multi-talker babble noise in the training.

In Fig. 1, the resulting spectrograms of the processed speech signals
are shown. It can be seen that the single-channel WF with L = 1
clearly decreases the background noise but speech components are also
attenuated which results in speech distortions. The MFMVDR yields
less speech distortions, but also less noise reduction. The proposed
MFMVDR+WF combines the benefits of the WF and MFMVDR
resulting in less speech distortions than the WF and the background
noise is reduced more compared to the MFMVDR. Hence, we achieve
a better trade-off between speech distortions and noise reduction with the
proposed MFMVDR+WF. Informal listening tests confirm the results.
But in terms of the background noise, more artifacts are audible with
the MFMVDR+WF than with the WF (L = 1) but less than without
the post-filter. This artifacts can be reduced for the MFMVDR ap-
proaches by using a different speech PSD estimator than in (19) like the
decision-directed approach [3] or cepstral smoothing [15].

Further, we evaluate the MFMVDR, WF and MFMVDR+WF in
terms of PESQ [10] and STOI [11] improvements compared to the noisy
speech signal. PESQ and STOI are instrumental measures for speech
quality and intelligibility respectively. In Fig. 2, the results for modulated
white Gaussian noise, traffic noise and an average over all evaluated
speech and noise files are given. It can be seen that the proposed noise
reduction algorithm exhibits considerably higher PESQ improvements
than the MFMVDR for all noise and SNR conditions. However, the con-
ventional WF (L=1) performs better than the MFMVDR and even better
than the MFMVDR+WF for SNRs up to 10 dB. Considering the overall
performance at 5 dB SNR, the proposed approach performs 0.14 MOS
better than the MFMVDR and 0.05 MOS worse than the WF. In terms
of STOI, the multi-frame algorithms achieve mainly improvements for
SNRs over 0 dB in comparison to the noisy input. The improvements
with post-filter are smaller than without. In contrast, the WF (L= 1)
achieves no predicted speech intelligibility for all SNRs. At 5 dB SNR,
the overall performance of the proposed approach yields a STOI score
0.3 % worse than the MFMVDR and 1.4 % better than the WF.

The results indicate that the WF (L= 1) reduces the background
noise well, which can be seen in the PESQ performance and in Fig. 1.
However, the speech components are also affected such that PESQ gets
worse with increasing SNR and speech intelligibility improvements are
not be predicted by STOI. The MFMVDR is designed to prevent speech
distortions and leads to improved STOI scores for SNRs larger than
0 dB. However, in Fig. 1 it can be seen that the noise reduction is less
compared to the WF which is why the instrumentally predicted quality
improvements are less. The proposed algorithm is a combination of
the MFMVDR and WF. The MFMVDR ensures that speech distortions
are kept low whereas the Wiener post-filter is designed to minimize the
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(c) Overall performance

Fig. 2. Noise reduction performance of the WF, MFMVDR and the
proposed MFMVDR+WF. The plots show the PESQ and STOI improve-
ments compared to the noisy speech signal. From top to bottom, the
results for modulated white Gaussian noise (a), traffic noise (b) and an
averaged performance (c) over 120 speech signals and 4 noise types are
shown.

mean-squared error between the clean speech signal and the estimated
speech. Thus, the background noise is reduced much more such that
the PESQ scores are better compared to the MFMVDR, while STOI is
slightly reduced but remains positive for SNRs larger 0 dB.

6. CONCLUSION

In this paper, we proposed to add a Wiener post-filter to the single-
microphone multi-frame minimum variance distortionless response
(MFMVDR) filter [6] [7] as the minimum-mean-squared error optimal
decomposition of the multi-frame Wiener filter (MFWF) [7] in the short-
time Fourier domain for single-microphone noise reduction. While in an
oracle setup the MFWF leads to a similar noise reduction performance
as the MFMVDR [7], in a blind setup the MFWF is very sensitive to
estimation errors [8]. In this paper we showed that robust results can
also be achieved in a blind setup by decomposing the MFWF into a
MFMVDR and a single-channel Wiener post-filter. For the parameter
estimation, we propose to pre-train typical interframe coherence matrices
of the interferences over a large database. The proposed approach has
been shown to be a good compromise between the performance of
a single-channel Wiener filter and the MFMVDR in terms of speech
quality and intelligibility predicted by PESQ and STOI respectively.
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