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ABSTRACT

We present a neural network based approach to acoustic beamform-
ing. The network is used to estimate spectral masks from which
the Cross-Power Spectral Density matrices of speech and noise are
estimated, which in turn are used to compute the beamformer co-
efficients. The network training is independent of the number and
the geometric configuration of the microphones. We further show
that it is possible to train the network on clean speech only, avoid-
ing the need for stereo data with separated speech and noise. Two
types of networks are evaluated. One small feed-forward network
with only one hidden layer and one more elaborated bi-directional
Long Short-Term Memory network. We compare our system with
different parametric approaches to mask estimation and using dif-
ferent beamforming algorithms. We show that our system yields
superior results, both in terms of perceptual speech quality and with
respect to speech recognition error rate. The results for the simple
feed-forward network are especially encouraging considering its low
computational requirements.

Index Terms— Robust Speech Recognition, Acoustic Beam-
forming, Feature Enhancement, Deep Neural Network

1. INTRODUCTION

Automatic Speech Recognition (ASR) performance experienced a
big boost in recent years with the rise of Deep Neural Networks
(DNNs) combined with ever increasing computational power and
the availability of hundreds of hours of transcribed speech data for
training. Trained in a noise-aware scenario with enough data, the
modeling power of DNNs rendered many of the signal or feature en-
hancement techniques developed for GMM-HMM systems superflu-
ous. Only some pre-processing steps are still able to bring noticeable
improvements. Especially if multi-channel audio data is available,
acoustic beamforming is one technique to achieve substantial gains.
And despite recent attempts to take advantage of multi-channel data
within a (convolutional) DNN or even training a network directly on
multi-channel waveforms, model-based beamforming still proved to
be superior [1] [2].

The model-based data-dependent beamforming operation re-
quires an estimate of either the Direction-of-Arrival (DoA) or the
(relative) transfer functions from the acoustic source to the micro-
phones. For the first, the geometry of the microphone array has to be
known, while the latter usually requires an estimation of the statistics
of the target speech signal. Further, advanced beamforming opera-
tions require an estimate of the Cross-Power Spectral Density (PSD)
matrix of the noise. These statistics can be obtained by estimating
spectral masks for speech and noise, and this is where data-driven
approaches can be incorporated, as is shown in this paper.
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While many model-based methods exist for spectral mask esti-
mation (i.e. [3, 4,5, 6, 7, 8]), we want to leverage the power of a
discriminatively trained data-driven approach to estimate a spectral
mask for the speech and the noise component. A distinctive advan-
tage of the proposed neural network based mask estimation is that
we are able to jointly estimate a spectral mask for all frequencies,
whereas it is common practice to treat individual frequencies sep-
arately in conventional parametric mask estimation. We show by
example that this property better captures speech charateristics, such
that the beamformer cannot be easily fooled by high-energy noise
sources and take them inadvertently as speech.

Due to their very nature, data-driven approaches usually perform
best when they are exposed to all test time variety at training time.
In our scenario, this noise-aware training requires separated speech-
and noise data. This requirement is often used to argue against such
an approach. We show that this requirement can be relaxed to some
extent and that even with only (clean) speech data available for mask
estimation good results can be achieved.

Apart from a comparison of parametric versus data-driven mask
estimation, we also compare two beamformer designs. Namely the
well known Minimum Variance Distortionless Response (MVDR)
and the Generalized Eigenvalue (GEV) beamformer with an optional
distortion reduction filter [9].

2. MASK ESTIMATION

2.1. Neural mask estimation

Our proposed mask estimator consists of multiple neural networks
with shared weights — one for each microphone channel. In this pa-
per we experimented with a small feed-forward (FF) network and
a bi-directional Long Short-Term Memory (BLSTM) network. Ta-
bles 1 and 2 show the configuration of their layers. The input (y:)
for each network is a single frame of the spectral magnitude of one
channel. Note that this means that the FF network has no tempo-
ral context. The output size of the network depends on the training
method.

In case of noise-aware training, two masks are estimated: the
first indicates which time frequency (tf) bins are presumably dom-
inated by speech, while the second one indicates which are dom-
inated by noise. When trained on clean speech only, we estimate
solely the mask for the speech component, Mx, and calculate the
mask for the noise component as 1 — Mx for each tf bin. The masks
for each channel are then condensed to a single speech and a single
noise mask using a median operation. The median is preferred over
a mean computation because of its resilience to outliers. Outliers
may be caused by broken or occluded microphones. The resulting
condensed masks are used to estimate the PSD matrices ®xx of
speech, and ®nn of noise, from which the beamformer coefficients
are obtained. Note that by treating each channel separately, spatial
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Table 1: BLSTM network configuration for mask estimation

Units Type Non-Linearity  Pdropout
L1 256 BLSTM Tanh 0.5
L2 513 FF ReLU 0.5
L3 513 FF ReLU 0.5
L4 513/1026 FF Sigmoid 0.0

Table 2: FF network configuration for mask estimation

Units Type Non-Linearity  paropout
L1 513 FF ReLU 0.5
L4 513/1026  FF Sigmoid 0.0

information is not exploited for mask estimation.

2.1.1. Weight initialization & optimization

For the BLSTM layer, weights are drawn from a uniform distribution
ranging from —0.04 to 0.04, while the Rectified Linear Unit (ReLU)
layers and the last layer are initialized according to [10]. The biases
are all initialized with zeros.

We employ RMSProp [11] for training. A fixed learning-rate
of 0.001, a momentum of 0.9 and, for the BLSTM network, full
backpropagation through time [12] is used. If the norm of a gradient
is greater than one, we divide the gradient by its norm [13].

To achieve a better generalization, we use dropout for the input-
hidden connection of the BLSTM units [14] and for the input of
the ReLU layers [15]. The dropout rate is fixed at paropour = 0.5
for every layer during the whole training. Additionally we use the
development data for cross-validation, stopping the training when
the loss does not decrease anymore after 10 epochs of patience.

We apply batch normalization for all but the output layers [16].
We normalize each frequency separately. Since we define a mini-
batch to comprise the frames of one utterance, we can use the mini-
batch instead of the population estimates for the mean and variance
normalization at decoding time [17].

2.1.2. Binary masks as targets

For the noise-aware training, the ideal binary mask for noise
(IBMn) is defined by

1 X[ - 10thN(f)7
IBMn (t, f) = o (1
0, else,
where || - || is the Euclidean norm.

Correspondingly, the ideal binary mask for the target signal
(IBMx) is defined by

1, X1 > 10thx(f)’
IBMxmf)—{o QQ‘ )

The two thresholds thx and thn are not identical. They are
chosen such that a decision in favor of speech or noise is only taken if
the instantaneous signal-to-noise ratio (SNR) is high or low enough,
respectively, to ensure a low false acceptance rate. This will result
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in more reliable PSD matrix estimates at the expense of discarding
some time-frequency bins which are categorized to be neither speech
nor noise.

For the training on clean speech only, we obtain the mask for
speech by sorting the time-frequency bins according to their con-
tribution to the signal power and then retaining the bins until their
summed contribution to the signal power equals 99%.

The cost of each batch is calculated using the cross-entropy be-
tween the binary mask(s) and the one(s) estimated by the network.

2.2. Model-based mask estimation

As a comparison we employed a parametric mask estimation, which
is based on an Expectation-Maximization (EM) algorithm for com-
plex Watson mixture models [7]. The EM algorithm is an iterative
two step approach which operates on each frequency bin indepen-
dently. This approach is referred to as Tranl0 in the following.

In the E-step the a posteriori probabilities of an observation be-
longing to either a speech source or noise are updated. In the M-step
the class dependent mode direction and concentration parameters of
the components are updated based on the results of the E-step.

In contrast to the proposed algorithm, the EM algorithm can di-
rectly make use of spatial information contained in the multi-channel
observations. A further difference is that the algorithm does not re-
quire a training phase since all necessary statistics are captured dur-
ing runtime. Its main drawback is obviously the fact, that, due to the
independent treatment of each frequency, it does not make use of the
typical spectral structure of speech.

As a second comparison, we employ our implementation of the
algorithm of [8] and refer to it as /to]3 in the following. It is a per-
mutation free frequency domain source separation algorithm, also
employing complex Watson mixture models. The method simulta-
neously processes all frequency bins by using a mixture model with
time-varying, frequency-independent mixture weights.

2.3. Acoustic beamforming

In the following, we describe the MVDR and GEV beamformer.
Note that although both operate frequency-wise, we omit the depen-
dency in the notation for better readabilty. For both beamformers the
PSD matrices are obtained from the estimated masks Mx and Mn
as follows:

@, => M,BYHY®H! where ve{X,N}. @)

t=1

2.3.1. MVDR beamformer

Perhaps the most frequently used beamformer for speech recogni-
tion as of now is the MVDR beamformer. It minimizes the residual
noise with the constraint, that any signal impining from the source
direction remains distortionless:

Fuvpr = argmin FP®&ynF st. Fid=1. (4
F
which leads to the following beamforming coefficients:
F Pnd )
MVDR = —F7——7 -
dH® 1 d

The response vector d can be obtained from an estimate of the DoA.
This, however, implicitly assumes an anechoic sound propagation.



An alternative, which is valid for reverberation and used in this pa-
per, is to use the principal component of the estimated power spectral
density matrix of speech: d = P {®xx }.

2.3.2. GEV beamformer

The objective of the GEV beamformer is to maximize the SNR for
each frequency bin [9]:

FidxxF

FHESNNF' ©

Fgev = argmax
F

The cost function in Eq. (6) is known as the Rayleigh coefficient.
The optimization problem leads to the well known generalized
eigenvalue problem

PxxF = A®nNF, @)
where A is an eigenvalue and F is an eigenvector. The optimal beam-
former is then the generalized principal component.

Please note that this does not require any assumptions regarding
the nature of the acoustic transfer function from the speech source to
the sensors (e.g., being anechoic) or regarding the spatial correlation
of the noise [9]. The only assumption which needs to be made is that
the target signal is prevalent in the target PSD matrix ®xx whereas
noise is prevalent in the noise PSD matrix ®n.

Unlike the MVDR beamformer, the GEV beamformer can intro-
duce arbitrary speech distortions. These, however, can be reduced
using a single channel post-filter [9]:

VFB NN ®NNFoev/D
Fiov®nnFary '

gBAN = ®
The filter performs a Blind Analytic Normalization (BAN) to obtain
a distortionless response in the direction of the speaker. If speech
distortions were removed perfectly, one would eventually arrive at
the MVDR beamformer [18, 19].

‘We now obtain an estimate for the source signal as:

Z(t) = gpanFopy Y (). 9)

3. RESULTS

In the following we present results obtained using the data from the
third CHiME challenge [20]. It features real and simulated 6-channel
audio data of prompts taken from the Sk WSJO-Corpus [21] with 4
different types of real-world background noise. Details are described
on the challenge website! and in [20].

3.1. MVDR vs. GEV

Although the GEV with the BAN postfilter is (under some circum-
stances) equal to the MVDR beamformer in theory, our results ob-
tained with our proposed system were constantly better when using
the GEV beamformer. We investigated this issue and found that this
is caused by the inversion of the noise PSD matrix when calculating
the beamforming coefficients (Eq. 5) for the MVDR beamformer.
This operation is numerically sensitive if the mask is very sparse
for some frequencies. To illustrate this, Fig. 1 displays the condi-
tion number of &N versus the SNR at the beamformer output with
masks estimated by the BLSTM network for the development set.
It is clearly visible that if the condition number is high, the MVDR

"http://spandh.dcs.shef.ac.uk/chime_challenge/data.html
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Fig. 1: Logarithm of the condition number of ®nn plotted against
the SNR of the MVDR and GEV beamformer output.
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beamformer achieves a smaller SNR at its output than the GEV. This
may be attributed to the fact that the GEV avoids the explicit ma-
trix inversion by solving the generalized eigenvalue problem which
seems to be numerically more stable?. Because of this issue, all fur-
ther results were obtained using the GEV beamformer.

3.2. Speech enhancement

To assess the speech enhancement performance of the different ap-
proaches, we measure the PESQ score after the beamforming opera-
tion. Note that this can only be evaluated if the speech and noise im-
ages are available separately. Thus, all results presented here are ob-
tained using the simulated development data of the CHiME dataset.
This also allows us to give an oracle score where we calculated the
PSD of the speech and noise signal directly on the images without
any masking.

Figure 2 shows the box plots for the PESQ score obtained with
the GEV beamformer with BAN to reduce speech distortions. The
noise-aware trained BLSTM is able to achieve performance nearly
equal to the oracle ones. When trained only on clean speech, the
performance drops slightly, on average by about 0.2 points. Surpris-
ingly good performance is achieved with the simple FF network. Es-
pecially when trained on clean speech, the difference to the BLSTM
is negligible. This changes for noise-aware mask training. We sus-
pect that in this case the model is unable to capture the full variety
induced by the noise due to its limited number of parameters. All
parametric approaches show noticeably worse performance. They
have a significant number of outliers, where the beamforming op-

2We used the solve function of the numpy package to calculate the MVDR
coefficients. We tried various things to improve numerical stability without
success.
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Fig. 3: Spectrogram of channel 5 of the utterance f06_440c020b_bus
(a). Estimation of the speech spectrogram using the mask of the
proposed BLSTM network (b) and the Tran10 approach (c). Note
how the high energy noise at the end has no effect on the neural
network, while the parametric approach concentrates on this part.

eration deteriorates the signal quality instead of improving it due to
wrong spectral masks.

We found that the parametric approaches are very sensitive to
high-energy noise sources concentrated on some frequency bins.
The networks on the other hand are able to ignore these noises.
Fig. 3 shows the different masks for such an example. The network
is able to leverage inter-frequency (and in case of the BLSTM also
temporal) dependencies and thus can distinguish between speech
and noise from their different time-frequency characteristics and not
from their energy alone.

3.3. Speech recognition

We evaluate the speech recognition performance using the CHiME
baseline DNN-HMM backend [20] without any further modifica-
tions 3. We did not use sequence training though due to its high
computational demands. From our experience with the CHiME chal-
lenge, sequence training leads to further improvements but is not
able to compensate for wrong masks.

For this scenario, we also compare two other (parametric) sys-
tems: BeamformlIt! [22] and the CHiME baseline beamformer [20].
Beamformlt! employs a Delay-and-Sum beamformer where the
DoA estimate is obtained from GCC-PHAT [23] and post-processed
to avoid instabilities. The CHiME baseline beamformer is a MVDR
beamformer, where the speaker location is estimated from a non-
linear SRP-PHAT pseudo-spectrum with the help of the Viterbi
algorithm and the noise PSD is estimated from a short context
before the utterance. In all cases we perform a matched training
where we train the recognizer using the training data after applying
the beamformer model in question to it. Note that the noise-aware

3Code for the experiment with the proposed beamformer is available here:
https://github.com/fgnt/nn-gev
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Table 3: Overview of the WERs for different beamforming systems

Development Evaluation

simu real simu real
Baseline 9.27 20.14 12.75 40.17
LSTM noise- 9.13 9.27 9.73 15.42
FF aware 9.70 11.21 10.65 17.85
LSTM lean 10.05 11.77 11.20 22.28

clear

FF 10.01 11.99 11.65 21.93
Beamformlt! 12.97 12.16 23.53 22.65
Ito13 18.79 19.98 27.34 27.32
Tran10 18.19 16.09 20.62 22.70

training of the BLSTM and FF networks are still only possible with
simulated data. For speech recognition, we did not use the BAN
postfilter as the results without are slightly better, indicating that the
acoustic model does compensate for the distortions introduced by
the GEV beamformer.

The results are shown in Table 3. Although the results for all
data sets are given, the result for the real evaluation set is surely the
most important one as it relates to real-world performance. They
show that our approach also performs very well on real data. It con-
sistently outperforms the other methods, mostly by a large margin®.
Even the systems trained only on clean speech are able to achieve
better WERs than the parametric approaches. However, the gap to
the systems using noise-aware mask estimation is non-negligible.
Further, we again want to emphasize the good performance obtained
with the simple FF network.

4. CONCLUSIONS AND RELATION TO PRIOR WORK

In this paper we present a new approach to acoustic beamforming
which employs neural networks for spectral mask estimation. A
key feature of the data-driven mask estimation is that it considers
all frequency bins simultaneously, while most parametric mask esti-
mation methods operate on a per frequency bin basis. The approach
outperforms beamforming based on parametric mask estimation in
terms of speech quality score as well as speech recognition perfor-
mance. Even a very small network is able to achieve remarkably
good performance using only a single frame input. This makes it
very well suitable for low-resource applications. We also show that
the training of the neural network is independent of the microphone
configuration, and that even a training on clean speech only delivers
remarkably good results, waiving the necessity to know the intended
noise scenario during training time.

The work presented here is a follow-up of our CHiME challenge
contribution [17]. While the proposed neural network-based mask
estimation was used there for the first time, the paper at hand pro-
vides an in-depth analysis of its properties, and proposes a much sim-
pler network structure which achieves comparable results. Further it
shows that the system is also competitive for speech enhancement,
and the possibility to use clean speech only at training time.

4The beamformer with the BLSTM mask estimation has - with other mod-
ifications to the ASR system - also been used in the CHiME challenge and
achieved competitive results, as described in [17]. Combined with the new
baseline backend we achieve a WER of 7.45% on the real test set.
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