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ABSTRACT

Enhancement of speech in non-stationary background noise
is a challenging task, and conventional single channel speech
enhancement algorithms have not been able to improve the
speech intelligibility in such scenarios. The work proposed
in this paper investigates a single channel Kalman filter based
speech enhancement algorithm, whose parameters are esti-
mated using a codebook based approach. The results indicate
that the enhancement algorithm is able to improve the speech
intelligibility and quality according to objective measures.
Moreover, we investigate the effects of utilizing a speaker
specific trained codebook over a generic speech codebook
in relation to the performance of the speech enhancement
system.

Index Terms— speech enhancement, kalman filter, au-
toregressive models

1. INTRODUCTION

Enhancement of speech degraded by background noise has
been a topic of interest in the past decades due to its wide
range of applications. Some of the important applications
are in digital hearing aids, hands free mobile communications
and in speech recognition devices. Speech enhancement al-
gorithms that have been developed can be mainly categorised
into spectral subtraction methods [1], statistical model based
methods [2, 3] and subspace based methods [4, 5]. The pri-
mary objectives of a speech enhancement system are to im-
prove the quality and intelligibility of the degraded speech.
Multi-channel speech enhancement algorithms proposed in
[6] have been able to show improvements in speech quality
and intelligibility [7]. In comparison to multi-channel algo-
rithms, conventional single channel speech enhancement al-
gorithms have not been successful in improving the speech
intelligibility, in presence of non-stationary background noise
[8, 9]. Babble noise, which is commonly encountered among
hearing aid users is considered to be highly non-stationary
noise. Thus, an improvement in speech intelligibility in such
scenarios is highly desirable.
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In this paper we investigate a speech enhancement frame-
work based on Kalman filtering. Kalman filtering for speech
enhancement in white background noise was first proposed
in [10]. This work was later extended to deal with coloured
noise in [11, 12], where the speech and noise short term pre-
dictor parameters (STP) required for the functioning of the
Kalman filter is estimated using an approximated expectation-
maximisation algorithm. The work presented in this paper
uses a codebook-based approach [13] for estimating the
speech and noise STP parameters. We also investigate the
effects of utilizing a speaker specific trained codebook over
a generic speech codebook in relation to the performance of
the enhancement system, which has not been considered in
previous studies. Objective measures such as Short Term Ob-
jective Intelligibility (STOI) [14], Perceptual Evaluation of
Speech Quality (PESQ) [15] and Segmental Signal to Noise
ratio (SegSNR) have been used to evaluate the performance
of the enhancement algorithm in presence of babble noise.

The remainder of the paper is structured as follows. Sec-
tion 2 explains the signal model and the assumptions that will
be used in the paper. Section 3 explains the speech enhance-
ment framework in detail. Experiments and results are pre-
sented in Section 4 followed by conclusion in Section 5.

2. SIGNAL MODEL

We now introduce the signal model and assumptions that will
be used in the remainder of the paper. It is assumed that clean
speech signal s(n) is additively interfered with the noise sig-
nal w(n) to form the noisy signal z(n) according to

z(n) = s(n) + w(n) ∀n = 1, 2 . . . (1)

It is also assumed that the noise and speech are statisti-
cally uncorrelated with each other. The clean speech signal
s(n) is modelled as a stochastic autoregressive (AR) process,

s(n) =

P∑
i=1

ai(n)s(n− i) + u(n) = a(n)T s(n− 1) + u(n), (2)

where a(n) = [a1(n), a2(n), . . . aP (n)]T is a vector contain-
ing the speech Linear Prediction Coefficients (LPC), s(n −
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Fig. 1. Basic block diagram of the speech enhancement
framework

1) = [s(n− 1), . . . s(n−P )]T , P is the order of the AR pro-
cess corresponding to the speech signal and u(n) is a white
Gaussian noise (WGN) with zero mean and excitation vari-
ance σ2

u(n). The noise signal is modelled as an AR process,

w(n) =

Q∑
i=1

bi(n)w(n−i)+v(n) = b(n)Tw(n−1)+v(n), (3)

where b(n) = [b1(n), b2(n), . . . bQ(n)]T is a vector contain-
ing noise LPC, w(n− 1) = [w(n− 1), . . . w(n−Q)]T , Q is
the order of the AR process corresponding to the noise signal
and v(n) is a WGN with zero mean and excitation variance
σ2
v(n). LPC along with excitation variance generally consti-

tutes the STP parameters.

3. METHOD

This section introduces the enhancement framework investi-
gated in this paper. A single channel speech enhancement
technique based on Kalman filtering has been used. A ba-
sic block diagram of the speech enhancement framework is
shown in Figure 1. It can be seen from the figure that the
noisy signal is fed as an input to Kalman smoother, and the
speech and noise STP parameters required for the functioning
of the Kalman smoother is estimated using a codebook-based
approach. The principles of the Kalman filter based speech
enhancement is explained in Section 3.1, and the codebook
based estimation of the speech and noise STP parameters is
explained in Section 3.2.

3.1. Kalman filter for Speech enhancement

The Kalman filter enables us to estimate the state of a pro-
cess governed by a linear stochastic difference equation in a
recursive manner. It is an optimal linear estimator in the sense
that it minimises the mean of the squared error. This section
explains the principle of a fixed lag Kalman smoother with
a smoother delay d ≥ P . Kalman smoother provides the
MMSE estimate of s(n) which can be expressed as

ŝ(n) = E(s(n)|z(n+ d), . . . , z(1)) ∀n = 1, 2 . . . (4)

The usage of Kalman filter from a speech enhancement per-
spective requires the AR signal model in (2) to be written as
a state space form as shown below

s(n) = A(n)s(n− 1) + Γ1u(n), (5)

where the state vector s(n) = [s(n)s(n − 1) . . . s(n − d)]T

is a (d + 1) × 1 vector containing the d + 1 recent speech
samples, Γ1 = [1, 0 . . . 0]T is a (d+ 1)× 1 vector and A(n)
is the (d+ 1)× (d+ 1) speech state evolution matrix written
as

A(n) =



a1(n) a2(n) . . . aP (n) 0 . . . 0
1 0 . . . 0 0 . . . 0
...

. . .
. . .

...
... . . .

...

0 . . . 1 0
... . . . 0

0 . . . . . . 1 0 . . . 0
... . . . . . . 0

. . .
. . .

...
0 . . . . . . 0 0 1 0


. (6)

Analogously, the AR model for the noise signal shown in (3)
can be written in the state space form as

w(n) = B(n)w(n− 1) + Γ2v(n), (7)

where the state vector w(n) = [w(n)w(n−1) . . . w(n−Q+
1)]T is a Q× 1 vector containing the Q recent noise samples,
Γ2 = [1, 0 . . . 0]T is a Q × 1 vector and B(n) is the Q × Q
noise state evolution matrix

B(n) =


b1(n) b2(n) . . . bQ(n)

1 0 . . . 0
...

. . . . . .
...

0 . . . 1 0

 . (8)

The state space equations in (5) and (7) are combined together
to form a concatenated state space equation as shown in (9)[

s(n)
w(n)

]
=

[
A(n) 0

0 B(n)

] [
s(n− 1)
w(n− 1)

]
+

[
Γ1 0
0 Γ2

] [
u(n)
v(n)

]
(9)

which is rewritten as

x(n) = C(n)x(n− 1) + Γ3y(n), (10)

where x(n) is the concatenated state space vector, C(n) is
the concatenated state evolution matrix, Γ3 =

[
Γ1 0
0 Γ2

]
and

y(n) =

[
u(n)
v(n)

]
. Consequently, (1) is rewritten as

z(n) = ΓTx(n), (11)

where Γ = [ΓT
1 ΓT

2 ]T . The final state space equation and
measurement equation denoted by (10) and (11) respectively,
is subsequently used for the formulation of the Kalman fil-
ter equations (12 - 17). The prediction stage of the Kalman
smoother, which computes the a priori estimates of the state
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vector (x̂(n|n−1)) and error covariance matrix (M(n|n−1))
is written as

x̂(n|n− 1) = C(n)x̂(n− 1|n− 1) (12)

M(n|n−1) = C(n)M(n−1|n−1)C(n)T +Γ3

[
σ2
u(n) 0
0 σ2

v(n)

]
ΓT
3 .

(13)
Kalman gain is computed as shown in (14)

K(n) = M(n|n− 1)Γ[ΓTM(n|n− 1)Γ]−1. (14)

Correction stage of the Kalman smoother, which computes
the a posteriori estimates of the state vector and error covari-
ance matrix is given by

x̂(n|n) = x̂(n|n− 1) + K(n)[z(n)− ΓT x̂(n|n− 1)]
(15)

M(n|n) = (I−K(n)ΓT )M(n|n− 1). (16)

Finally, the enhanced signal using a Kalman smoother at time
index n − d is obtained by taking the d + 1th entry of the a
posteriori estimate of the state vector as shown in (17)

ŝ(n− d) = x̂d+1(n|n). (17)

3.2. Codebook based estimation of STP parameters

The usage of Kalman filter from a speech enhancement per-
spective, as explained in Section 3.1 requires the state evo-
lution matrix C(n) (consisting of the speech LPC and noise
LPC), variance of speech excitation signal σ2

u(n) and variance
of the noise excitation signal σ2

v(n) to be known. These pa-
rameters are assumed to be constant over frames of 25 ms due
to the quasi-stationary nature of speech. This section explains
the MMSE estimation of these parameters using a codebook
based approach. This method uses the a priori information
about speech and noise spectral shapes stored in trained code-
books in the form of LPC.

The parameters to be estimated are concatenated to form
a single vector θ = [a; b;σ2

u;σ2
v ]. The MMSE estimate of the

parameter θ is written as

θ̂ = E(θ|z), (18)

where z denotes a frame of noisy samples. Using Bayes’ the-
orem, (18) can be rewritten as

θ̂ =

∫
Θ

θp(θ|z)dθ =

∫
Θ

θ
p(z|θ)p(θ)
p(z)

dθ, (19)

where Θ denotes the support space of the parameters to
be estimated. Let us define θij = [ai; bj ;σ

2,ML
u,ij ;σ2,ML

v,ij ]

where ai is the ith entry of speech codebook (of size Ns),
bj is the jth entry of the noise codebook (of size Nw) and

σ2,ML
u,ij , σ2,ML

v,ij represents the maximum likelihood (ML) es-
timates [16] of speech and noise excitation variances which
depends on ai,bj and z. ML estimates of speech and noise
excitation variances are estimated according to the following
equation,

E

[
σ2,ML
u,ij

σ2,ML
v,ij

]
= D, (20)

where

E =


∥∥∥ 1
P 2

z (ω)|Ai
s(ω)|4

∥∥∥ ∥∥∥ 1

P 2
z (ω)|Ai

s(ω)|2|Aj
w(ω)|2

∥∥∥∥∥∥ 1

P 2
z (ω)|Ai

s(ω)|2|Aj
w(ω)|2

∥∥∥ ∥∥∥ 1

P 2
z (ω)|Aj

w(ω)|4

∥∥∥
 ,

(21)

D =

∥∥∥ 1
Pz(ω)|Ai

s(ω)|2

∥∥∥∥∥∥ 1

Pz(ω)|Aj
w(ω)|2

∥∥∥
 , (22)

and 1
|Ai

s(ω)|2 is the spectral envelope corresponding to the ith

entry of the speech codebook, 1
|Ai

w(ω)|2 is the spectral enve-
lope corresponding to the jth entry of the noise codebook and
Pz(ω) is the spectral envelope corresponding to the noisy sig-
nal. Consequently, a discrete counterpart to (19) can be writ-
ten as

θ̂ =
1

NsNw

Ns∑
i=1

Nw∑
j=1

θij
p(z|θij)p(σ2,ML

u,ij )p(σ2,ML
v,ij )

p(z)
, (23)

where the MMSE estimate is expressed as a weighted lin-
ear combination of θij with weights proportional to p(z|θij),
which is computed according to the following equations

p(z|θij) = exp(−dIS(Pz(ω), P̂ ij
z (ω))) (24)

P̂ ij
z (ω) =

σ2,ML
u,ij

|Ai
s(ω)|2

+
σ2,ML
v,ij

|Ai
w(ω)|2

(25)

p(z) =
1

NsNw

Ns∑
i=1

Nw∑
j=1

p(z|θij)p(σ2,ML
u,ij )p(σ2,ML

v,ij ) (26)

where dIS(Pz(ω), P̂ ij
z (ω)) is the Itakura Saito distortion [17]

between the noisy spectrum and the modelled noisy spectrum.
More details on the derivation of this method can be found
in [13] and the references therein. It should be noted that
the weighted summation of AR parameters in (23) should be
performed in the line spectral frequency (LSF) domain rather
than in the LPC domain. Weighted summation in LSF domain
is guaranteed to result in stable inverse filters, which is not
always the case in LPC domain [18].

4. EXPERIMENTS

This section describes the experiments performed to evaluate
the speech enhancement framework explained in Section 3.
Objective measures, that have been used for evaluation are
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STOI, PESQ and SegSNR. The test set for this experiment
consisted of speech from 4 different speakers: 2 male and 2
female speakers from the CHiME database [19] resampled to
8 KHz. The noise signal used for simulations is multi-talker
babble from the NOIZEUS database [20]. The speech and
noise STP parameters required for the enhancement proce-
dure is estimated every 25 ms as explained in Section 3.2.
Speech codebook used for the estimation of STP parameters
is generated using the Generalised Lloyd algorithm (GLA)
[21] on a training sample of 10 minutes of speech from the
TIMIT database [22]. The noise codebook is generated using
two minutes of babble. The order of the speech and noise AR
model is chosen to be 14. The parameters that have been used
for the experiments are summarised in Table 1.

fs Frame Size Ns Nw P Q
8 Khz 200 (25ms) 256 12 14 14

Table 1. Experimental setup

The estimated STP parameters are subsequently used for
enhancement by a fixed lag Kalman smoother (with d = 40).
In this paper, we have also investigated the effects of hav-
ing a speaker specific codebook instead of a generic speech
codebook. The speaker specific codebook is generated by
GLA using a training sample of five minutes of speech from
the specific speaker of interest. The speech samples used for
testing was not included in the training set. A speaker code-
book size of 64 entries was empirically noted to be sufficient.
The system of Kalman smoother, utilising a speech codebook
and speaker codebook for the estimation of STP parameters is
denoted as KS-speech model and KS-speaker model respec-
tively. The results are compared with Ephraim-Malah (EM)
method [3] and state of the art MMSE estimator based on gen-
eralised gamma priors (MMSE-GGP) [23]. Figures 2, 3 and
4 shows the comparison of STOI, SegSNR and PESQ scores
respectively, for the above mentioned methods. It can be seen
from Figure 2 that the enhanced signals obtained using EM
and MMSE-GGP have lower intelligibility scores than the
noisy signal, according to STOI. The enhanced signals ob-
tained using KS-speech model and KS-speaker model show a
higher intelligibility score in comparison to the noisy signal.
It can be seen, that using a speaker specific codebook instead
of a generic speech codebook is beneficial, as the STOI scores
shows an increase of upto 6%. The SegSNR and PESQ results
shown in Figures 3 and 4 also indicate that KS-speaker model
and KS-speech model performs better than the other meth-
ods. Informal listening tests were also conducted to evaluate
the performance of the algorithm.

5. CONCLUSION

This paper investigated a speech enhancement method based
on Kalman filter, and the parameters required for the function-
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ing of Kalman filter were estimated using a codebook based
approach. Objective measures such as STOI, SegSNR and
PESQ were used to evaluate the performance of the algorithm
in presence of babble noise. Experimental results indicate that
the presented method was able to increase the speech qual-
ity and speech intelligibility according to the objective mea-
sures. Moreover, it was noted that having a speaker specific
trained codebook instead of a generic speech codebook can
show upto 6% increase in STOI scores. As future work, it
would be interesting to see how a generic speech codebook
can be adapted to a speaker specific codebook. Subjective lis-
tening tests will also be conducted in the future to validate the
results shown here.
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