
THE RECURSIVE HESSIAN SKETCH FOR ADAPTIVE FILTERING

Robin Scheibler and Martin Vetterli

School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

{robin.scheibler,martin.vetterli}@epfl.ch

ABSTRACT

We introduce in this paper the recursive Hessian sketch, a new
adaptive filtering algorithm based on sketching the same expo-
nentially weighted least squares problem solved by the recur-
sive least squares algorithm. The algorithm maintains a num-
ber of sketches of the inverse autocorrelation matrix and re-
cursively updates them at random intervals. These are in turn
used to update the unknown filter estimate. The complexity
of the proposed algorithm compares favorably to that of recur-
sive least squares. The convergence properties of this algorithm
are studied through extensive numerical experiments. With an
appropriate choice or parameters, its convergence speed falls
between that of least mean squares and recursive least squares
adaptive filters, with less computations than the latter.

Index Terms— Recursive least squares, adaptive filtering,
sketching.

1. INTRODUCTION

Adaptive filters are a cornerstone of classical statistical signal
processing. They are routinely used for tasks such as system
identification, echo cancellation, channel equalization, and
beamforming [1]. These play a critical role in handsfree tele-
phony, teleconferencing, digital communications, and many
other practical systems. Two adaptive filters in particular have
proved very popular: the least mean squares (LMS) and the
recursive least squares (RLS) algorithms. On the one hand,
LMS optimizes the mean squared error (MSE) using a stochas-
tic gradient descent. On the other hand, RLS solves recursively
a large least squares (LS) problem. While the former enjoys
simplicity of implementation, low-complexity — linear in the
filter length — and good stability properties, it sometimes lacks
in terms of speed of convergence. The latter can offer a greater
speed of convergence at the cost of a computational complexity
quadratic in the filter length.

In recent years, a number of authors have presented ap-
proximation schemes relying on random projections to acceler-
ate the solution of large LS problems [2, 3, 4]. Such methods

This work was supported by the Swiss National Science Founda-
tion grant 20FP-1 151073 — Inverse problems regularized by sparsity.
All the code used to produce the results of this paper is available at
http://github.com/LCAV/sketchrls

are often referred to as sketching. Of particular interest is the
iterative Hessian sketch (IHS) algorithm proposed by Pilanci
and Wainwright [4]. Unlike other methods, the IHS algorithm
gives sharp guarantees on how close the approximate solution
is to that of the original LS problem, rather than just on the
residual.

In this work, we propose the recursive Hessian sketch
(RHS) algorithm. It is a randomized, approximate version of
the RLS algorithm that relies on IHS to solve the underlying LS
problem recursively. The benefit of this formulation is to allow
a reduction in computational complexity at the cost of some
convergence speed, thus bridging the gap between LMS and
RLS. Rather than compute the exact inverse autocorrelation
matrix at every step, RHS keeps N sketches that are updated
independently with probability q at each round. At every up-
date, the IHS iterations are run and a new filter is produced.
Parameters N and q control the trade-off between complexity
and convergence. Unfortunately, the convergence of IHS to the
LS solution is only proved for sub-Gaussian and randomized
orthonormal systems sketches [4]. Both of these sketches are
not suitable for RHS and we rely instead on random row sam-
pling. The proof of convergence of the algorithm is the topic
of on-going work and we demonstrate its effectiveness through
comprehensive numerical experiments only.

The rest of this paper is organized as follows. Section 2
introduces the necessary material about adaptive filters and the
IHS algorithm. In Section 3, we describe the proposed algo-
rithm and evaluate its complexity. The results of numerical ex-
periments are presented in Section 4. We conclude in Section 5.

2. BACKGROUND

Throughout the paper we denote all matrices by bold upper case
and vectors by bold lower case letters. The time index is n ∈ N
and the Euclidean norm operation is ‖x‖ = (xTx)1/2.

2.1. Adaptive Filters

The adaptive filtering problem aims at finding an unknown filter
h ∈ Rd from a known reference signal xn, and its filtered
samples corrupted by noise dn = (x ? h)n + vn, where vn ∼
N (0, σ2

v) is additive white Gaussian noise, and ? is the discrete
convolution operation. The system is illustrated in Fig. 1.

171978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

Fig. 1: Block-diagram of the adaptive filtering problem.

Two popular algorithms for adaptive filtering are the LMS
and RLS algorithms [1]. The LMS algorithm is a stochastic
gradient descent solving the following minimization problem

wn = argmin
w

E|en|2, (1)

where en = dn −wT
nxn. Computing the gradient of the cost

function and dropping the expectation leads to the update rule

wn+1 = wn + µenxn, (2)

where µ is the step size. The normalized LMS (NLMS) algo-
rithm solves the problem of choosing the value of µ by using
the adaptive step size µ = µ′/(xTx). In the absence of noise
setting µ′ = 1 leads to the optimal learning rate [1].

The RLS algorithm solves the following exponentially
weighted LS problem

wn = argmin
w

∥∥∥Λ1/2
n (Xnw − dn)

∥∥∥2 , (3)

where Xn = [xn · · ·x1]
T , xn = [xn, . . . , xn−d+1]

T , dn =
[dn, . . . , d1]

T , Λn = diag(1, . . . , λn−1) and λ is a forget-
ting factor allowing the algorithm to adapt to a time-varying
filter. The LS solution to this problem is wn = R−1

n bn where
Rn = XT

nΛnXn and bn = XT
nΛndn. This solution can be

recursively computed from wn−1, xn, and dn. Since Xn =
[xn XT

n−1]
T and dn = [dn dTn−1]

T , we have

Rn = λRn−1 + xTnxn, bn = λbn−1 + dnxn, (4)

Pn = R−1
n = λ−1Pn−1 − λ−1 Pn−1xnxTnPn−1

λ+ xTnPn−1xn
, (5)

where the last update is obtained from the recursion for Rn and
the matrix inversion lemma [5]. A little algebra yields the final
form of the algorithm as described in Algorithm 11.

2.2. Iterative Hessian Sketch

In general, sketching methods use random projections to reduce
the size of an LS problem with guarantees that the solution to
the reduced problem stays close to the original problem. The
goal is a reduction in computation. The IHS is such a method
recently proposed by Pilanci and Wainwright to solve a class of
constrained optimization problems of the form

min
x∈C

1

2n
‖Ax− y‖2 (6)

1Algorithm 1 is block RLS with Xn,L = [xn+L · · ·xn+1]T and
dn,L = [dn+L, . . . , dn+ 1]T . Setting L = 1 yields standard RLS.

Algorithm 1 BlockRLS

Require: λ, δ, P0 = δ−1Id, w0 = 0

Ensure: wn = argmin
w̃
‖Λ1/2

n (Xnw̃ − dn)‖22
for every L new samples do:
Z← PnXT

n,L

G← λ−LZ(Λ−1
L + λ−LXn,LZ)−1

wn+L ← wn + G(dn,L −Xn,Lwn)
Pn+L ← λ−L(Pn −GZT)

where C is a constraint set [4], A ∈ Rn×d, x ∈ Rd, and y ∈
Rn. In this work, we always have C = Rd, and the problem
simplifies to unconstrained LS. In that case, the IHS algorithm
reduces to the following iterative process

xi = xi−1 + (ATSTi SiA)−1AT (y −Axi−1) (7)

for i = 1, . . . , N , x0 = 0, and {Si ∈ Rm×n}Ni=1, m ≤ n, are
sketching matrices chosen independently at random. Sketching
matrices can be, for example, matrices with normal iid entries,
the so-called fast Johnson-Lindenstrauss transform [6], or a ma-
trix sampling the rows of A at random. Their key property is to
preserve the norms of the columns of A up to some controlled
distortion. They must satisfy E[STS] = In.

3. RECURSIVE HESSIAN SKETCH

3.1. Algorithm

The idea of the recursive Hessian sketch (RHS) is to apply the
IHS algorithm to solve (3) recursively as new data streams in.
To derive the RHS algorithm we follow a strategy similar to that
of RLS and add the sketching matrix S in the problem. Instead
of computing the inverse autocorrelation matrix P explicitly
at every step, we maintain N sketched matrices {P̃i}Ni=1 that
we update with probability q. Compared to conventional RLS,
such a scheme only requires to do an inverse matrix update ev-
ery (Nq)−1 iterations on average. Provided the update of a
sketched matrix P̃i can be done efficiently, we hope to have
a computational complexity gain. We expect this approximate
scheme to have an impact on the speed of convergence of the
algorithm. By varying the parameters, we hope to get an inter-
esting trade-off between complexity and convergence.

The algorithm needs a sketching matrix that can be updated
in an online fashion. A variant of the random row sampling
proposed in [4] can be recursively defined

Sn =

[
bn/
√
q 0

0 Sn−1

]
, bn ∼

{
1 w.p. q
0 w.p. 1− q

. (8)

Note that in contrast to the random row sampling of [4] that
selects a deterministic number of rows, the number of rows of
Sn is a binomial random variable m ∼ B(n, q). However, as
n grows large, it becomes tightly concentrated around its mean
E[m] = nq. One can verify that E[STS] = In

Such a sketching matrix can be implemented in the follow-
ing way. For every new sample received, N random samples
{bi}N−1

i=0 are drawn independently from a Bernoulli(q) distri-
bution (as in (8)). If at least one of bi = 1, an update is done.

172

Algorithm 2 RHS

Require: λ, δ, N , q, R = δId, {P̃i = δ−1Id}Ni=1, w,b = 0.
Ensure: w = argmin

w̃
‖Λ1/2

n (Xnw̃ − dn)‖22

Draw at random {bi}Ni=1
iid∼ Bernoulli(q)

if bi = 1 for some i = 0, . . . , N − 1 then
L← n− kr
kr ← n
R← λLR + XT

n,LΛLXn,L

b← λLb + XT
n,LΛLdn,L

for i = 1, . . . , N do
if bi = 1 then
L← n− kp(i)
kp(i)← n

z← P̃ixn

P̃i ← λ−L
(
P̃i − zzT

qλL+xT
n z

)
end if
w← w + 1

n
P̃i (b−Rw)

end for
end if

First, Rn and bn are updated with all new samples received
since the last update. This can be done as a block update. Then,
for all {i : bi = 1}, we update the corresponding P̃i. Assum-
ing L samples arrived since the previous update, we have

R̃n = XT
nΛ1/2

n STnSnΛ1/2
n Xn = q−1xxT + λLR̃n−L (9)

and using again the matrix inversion lemma, as in RLS,

P̃n = λ−LP̃n−L − λ−L
P̃n−LxnxTn P̃n−L

qλL + xTn P̃n−Lxn
. (10)

It is important to note that whereas block RLS would require a
rank-L update, RHS only requires N rank-1 update, which can
be significantly cheaper provided N � L. The final step is to
run the N iterations of IHS algorithm

wi,n = wi−1,n+
1

n
P̃i,n (bn −Rnwi−1,n) , i = 1, . . . , N,

(11)
with w0,n = wN,n−L, the solution produced by the algo-
rithm during the previous update. Pseudocode is given in Algo-
rithm 2.

3.2. Complexity Analysis

The RHS is a block update algorithm but where the block size
is random. In general, performing block updates allows some
computational gain compared to updating at every sample. For
this reason, we compare the complexity of RHS to that of the
block RLS described in Algorithm 1. Although block RLS
only updates the filter every L sample, its output is exactly
that of conventional RLS at the corresponding sample. The
main advantage of block update is to make use of fast multi-
plication by Xn,L. Since it is an L × d Hankel matrix, mul-
tiplying a vector by Xn,L, or its transpose, has complexity
O((d + L) log(d + L)). This can be done by flipping upside-
down the rows to obtain a Toeplitz matrix, take its circulant ex-
tension and use the FFT algorithm to compute the product [7].

Fig. 2: The shaded areas indicate where RHS has lower com-
plexity than block RLS for various values of d.

For the comparison, we only establish an approximate count
of operations. This is justified for several reasons. First, both
algorithms use the same primitives, that is matrix-vector and
matrix-matrix products as well as FFT, and thus the big-O con-
stants should be approximately the same for both algorithms.
Second, the exact runtime of these primitives is highly depen-
dent on the implementation and the architecture of the machine
used. Our goal here is to show that there is an interesting regime
for the RHS algorithm.

Let us start with the Block RLS complexity. Counting from
Algorithm 1 and dividing by the block size L, we obtain

CBRLS = O
(
(d+ L+ 1)(d+ L) log(d+ L)/L+ d2

+ (2d2 + d)/L+ (L+ 1)d+ L2), (12)

where d is the dimension of the filter. We assumed a naive
algorithm for the multiplication by a non-Toeplitz matrix. No-
tice that there is a quadratic term in d independent of the block
size. This means that the asymptotic complexity of block RLS
is identical to that of conventional RLS.

We can do a similar count for the RHS algorithm described
in Algorithm 2. Since the algorithm is not deterministic, we
will use the average complexity. When the number of samples
is large, the actual complexity should be very close to its expec-
tation. Let us firs compute the update probability p. An update
happens only if at least one of bi = 1, which happens with
probability p = 1 − (1 − q)N . Then, the average number of
sketched matrices to update is E

∑
bi = Nq. Finally, the up-

date probability is fixed to p = 1/L so that the average block
size is the same as that of block RLS. Adding the N iterations
of IHS we obtain the following average complexity per sample

CRHS = O
(
(d+ 1)(d+ L) log(d+ L)/L+ 3d/L

+ 3Nq(d2 + d) + (2d2 + 3d)N/L
)

(13)

Fig. 2 shows regions of the (N, p) space where RHS has a
lower computational complexity than block RLS. We observe
that even for large filter lengths d there are significant regions
where a gain can be obtained. In the following section, numeri-
cal experiments will reveal that these regions are not incompat-
ible with a fast convergence rate.

173

(a) White noise (b) AR(1)

Fig. 3: Evaluation of the MSE over time for 300 realizations of an adaptive filter of length d = 1000. The driving signal xn is
(a) white noise and (b) AR(1) process. The short and long dashed lines are NLMS and RLS respectively. The solid lines are RHS
with, on the right, fixed N = 5 and from darker to lighter p = 0.05, 0.01, 0.005, 0.001, and, on the left, fixed p = 0.005 and from
darker to lighterN = 20, 10, 5, 2. From top to bottom the SNR is 10, 20, and 30 dB. The step size of NLMS is µ = 0.5 in all cases
except (b) 30 dB, where it is µ = 1. For RLS and RHS, δ = 20, 10, 10 at SNR 10, 20, 30 dB respectively. The forgetting factor is
fixed to λ = 0.9999.

4. NUMERICAL EXPERIMENTS

In this section we assess the practical performance of the pro-
posed algorithm and compare it to that of the NLMS and RLS
algorithms. For the experiment two driving signals xn are
used, unit variance white noise, and an autoregressive process
of order 1 (AR(1)) generated by filtering white noise with filter
[1, 0.9]. The unknown filter h is sampled uniformly at random
from the sphere Sd−1 with d = 1000 and the reference signal
dn is generated by convolving xn with h and adding white
Gaussian noise with variance σv = 10−

SNR
20 , SNR = 10, 20, 30

dB. For RLS and RHS, the regularization parameter is fixed to
δ = 20, 10, 10 for SNR 10, 20, and 30 dB, respectively. The
forgetting factor is fixed to λ = 0.9999 to ensure stability. The
step size for NLMS is fixed to µ = 0.5 in all cases except in
the case of AR(1) at 30 dB SNR where µ = 1. These step
sizes were picked to balance speed of convergence and residual
errors. Two experiments are done with the parameters of RHS.
First,N is fixed to 5 and p is varied over 0.001, 0.005, 0.01, and
0.05. Second, p is fixed to 0.005 and N is varied over 2, 5, 10,
and 20. The filter is then run until n = 20000 and n = 40000
for the white noise and AR(1) input signals, respectively.

In Fig. 3, the evolution of the MSE over time for 300 re-
alizations of the adaptive algorithms is plotted for all configu-
rations just described. From the simulation results we observe
that RHS can have a fast convergence. For all p ≥ 0.005 tested,
it is faster than NLMS. While slower than RLS in most cases,
RHS reaches the same residual errors much lower than that of

NLMS. The exception is for AR(1) driving signal at 10 dB SNR
where surprisingly RHS has faster convergence than RLS and
seems to attain a lower residual error. In general performance
degrades for AR(1) signal compared to white noise, but RHS
maintains acceptable performance, somewhat between that of
NLMS and RLS.

5. CONCLUSION

Leveraging recent advances in sketching for solving least
squares problems, we proposed the recursive Hessian sketch
(RHS), a new adaptive filtering algorithm solving the same
exponentially weighted least squares problem as the conven-
tional RLS but in an approximate way. Two parameters, the
number of sketches N and the update probability q, control
the computational complexity and the convergence of the al-
gorithm. We found that there are interesting operating points
where the computational complexity is lower than that of RLS
while maintaining a fast convergence and low residual error.
This was demonstrated through numerical experiments for a
large number of combinations of parameters.

Left to prove is the convergence of the IHS algorithm —
on which RHS relies — when using the random row sampling
sketch. Another open question is the general stability of the
algorithm over a large range of parameters and driving signals.
Of particular interests is its performance on real world signals
such as speech or music.

174

6. REFERENCES

[1] S. Haykin, Adaptive filter theory. Prentice Hall, 2014.

[2] C. Boutsidis and P. Drineas, “Random projections for the
nonnegative least-squares problem,” Linear algebra and its
applications, vol. 431, no. 5-7, pp. 760–771, 2009.

[3] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sar-
los, “Faster least squares approximation,” Numerische
mathematik, vol. 117, pp. 219–249, Feb. 2011.

[4] M. Pilanci and M. J. Wainwright, “Iterative Hessian sketch:
Fast and accurate solution approximation for constrained
least-squares,” 2014, arXiv:1411.0347v1.

[5] M. A. Woodbury, “Inverting modified matrices,” Memo-
randum report, vol. 42, p. 106, 1950.

[6] N. Ailon and B. Chazelle, “The Fast John-
son–Lindenstrauss transform and approximate nearest
neighbors,” SIAM Journal on computing, vol. 39, pp. 302–
322, Jan. 2009.

[7] R. H. Chan and M. K. Ng, “Conjugate Gradient Methods
for Toeplitz Systems,” SIAM Review, vol. 38, pp. 427–482,
Sept. 1996.

175

