
SUPERVISED SPEECH DEREVERBERATION IN NOISY ENVIRONMENTS USING
EXEMPLAR-BASED SPARSE REPRESENTATIONS

Deepak Baby and Hugo Van hamme

Department ESAT, KU Leuven, Belgium.
{Deepak.Baby, Hugo.Vanhamme}@esat.kuleuven.be

ABSTRACT

Exemplar-based techniques, where the noisy speech is decomposed

as a linear combination of the speech and noise exemplars stored in

a dictionary, have been successfully used for speech enhancement

in noisy environments. This paper extends this technique to achieve

speech dereverberation in noisy environments by means of a non-

negative approximation of the noisy reverberant speech in the fre-

quency domain. A novel approach for estimating the room impulse

response (RIR) together with the speech and noise estimates using a

non-negative matrix deconvolution (NMD) -based technique is pro-

posed. In addition, we extend an existing technique based on non-

negative matrix factorisation (NMF) that performs speech derever-

beration in noise-free environments to noisy scenarios. New estima-

tors for jointly obtaining the RIR and exemplar weights for the NMD

and NMF -based formulations are presented. The proposed tech-

niques are evaluated on the noise-free and noisy reverberant speech

in the CHiME-2 WSJ0 database and are shown to yield better speech

enhancement in terms of signal-to-distortion ratio (SDR), perceptual

evaluation of speech quality (PESQ) and cepstral distance (CD) mea-

sures.

Index Terms— speech dereverberation, non-negative matrix de-

convolution, non-negative matrix factorisation

1. INTRODUCTION

Speech recordings obtained using a distant microphone in a noisy en-

closed space often have reduced intelligibility due to additive noise

and room reverberation. Therefore it is desirable to have a mecha-

nism for noise suppression and dereverberation in many applications

such as hearing aids and automatic speech recognition. Most of the

traditional systems first make use of a source separation or denois-

ing technique followed by a dereverberation step. In this paper, we

concentrate on a system that can jointly obtain speech denoising and

dereverberation on single channel data.

There exist a few unsupervised techniques that consider simul-

taneous denoising and dereverberation. For example, a two-stage

method is proposed in [1] does channel identification followed by

signal estimation, which requires prior knowledge about single-talk

periods for channel identification. The TRINICON technique pro-

posed in [2,3] also performs joint denoising and dereverberation us-

ing the higher order statistics of speech. Another work presented in

[4] aims at achieving a similar task in a tandem manner.

In this paper, we propose a supervised speech enhancement

technique operating on the magnitude spectrogram domain that can
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jointly obtain speech denoising and dereverberation using exem-

plars of speech and noise. The proposed model assumes that the

magnitudes of the short-time Fourier transform (STFT) of the noisy

reverberant speech at every frequency bin can be approximated as a

sum of magnitude STFT of the additive noise and a convolution of

the magnitude STFT of clean speech signal with that of the room im-

pulse response (RIR) in that frequency bin. Such an approximation

based on the non-negative transfer function has been successfully

used in noise-free scenarios for speech dereverberation [5–10].

The main contribution of this paper is to propose a speech

denoising model using non-negative matrix deconvolution (NMD)

[11] -based technique to separate speech and noise that is optimised

jointly with a non-negative RIR model in the magnitude STFT

domain for dereverberation. We make use of speech and noise

exemplars that are stored in speech and noise dictionaries to de-

compose the noisy speech, and use the speech estimate to estimate

the RIR. In addition, we extend a technique proposed in [6] that

uses non-negative matrix factorisation (NMF)-based approximation

for noise-free reverberant speech to noisy cases as well. A similar

technique is also explored in [12] which also uses NMF-based for-

mulation for dereverberation where the estimate of the RIR is based

on both speech and noise estimates. However, we argue that the RIR

estimate estimated from both speech and noise is unreliable when

we have multiple and/or moving noise sources, and we reformulate

the problem such that the RIR is estimated only based on the speech

estimate.

The proposed approaches are evaluated on the CHiME-2

database which contains the speech data added with room rever-

beration and multi-source noises. In addition, we also evaluate on

the noise-free reverberant data to identify which formulation is better

in such scenarios. The experimental results show that the proposed

techniques yield better speech enhancement in terms of various

measures over the traditional NMD and NMF-based techniques that

do not have a reverberation model.

2. NON-NEGATIVE REPRESENTATION OF

REVERBERANT SPEECH

This section details the non-negative formulation of reverberation

in the magnitude short-time Fourier transform (STFT) domain. Let

y[n] and h[n] denote the clean speech signal and room impulse re-

sponse (RIR) of length Lt, respectively. The resulting reverberant

signal is obtained by convolving the speech signal with the RIR, i.e.,

z[n] = y[n] ∗ h[n] =
∑

m h[m]y[n−m]. In the STFT domain, for

the f -th frequency bin at frame t, this can be approximated as [5,6]:

Z(f, t) ≈

L∑

p=1

H(f, p)Y(f, t− p+ 1) (1)
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where Z, H and Y denote the complex-valued STFT of z[n], h[n]
and y[n], respectively. L denote the length of the RIR in the STFT

space. Let the STFT be obtained for 2K frequency bins and Z con-

tains F frames.

For the non-negative formulation the magnitude STFT of the re-

verberant signal is considered, which is approximated as Z(f, t) ≈
∑L

p=1 H(f, p)Y(f, t − p + 1), where Z = |Z|, H = |H| and

Y = |Y|. Such an approximation has been successfully used for

speech dereverberation in [6,9].

The approximation can be expressed as a matrix operation as

Z ≈
L∑

p=1

[H]
p
⊚

(p−1)→

Y (2)

where [H]
p

is the p-th column of the matrix H and
p→

Y denotes the

right-shifting operation by adding p columns of zeros to the left and

removing the last p columns of Y. The operation h ⊚ Y stands

for the element-wise multiplication of a vector h with the all the

columns of Y.

3. METHODOLOGY

This paper aims at speech dereverberation in noisy environments

where the reverberant speech is corrupted with additive noise w[n].
In this work, we assume an additive model for the noisy reverberant

speech as:

Z ≈ Z̃ =
L∑

p=1

[H]
p
⊚

(p−1)→

Y + W (3)

where, W is the magnitude STFT of w[n]. We also assume that the

reverberation is to be modelled only with the speech signal. Such

an assumption is also beneficial to obtain a better and reliable esti-

mate of H since we assume a fixed RIR between the speaker and the

microphone, whereas such assumptions are often invalid for a real

background noise source.

The goal of this work is thus to estimate H, Y and W from

the magnitude STFT of the noisy reverberant speech signal Z. We

use an exemplar-based technique to decompose Z as the sum of re-

verberant speech and noise estimates. Only the positive half of the

magnitude STFT is used resulting in a Z of size K × F . Exemplar-

based techniques make use of speech and noise dictionaries S and

N containing Js clean speech and Jn noise exemplars randomly

sampled from the training data, respectively. To model the temporal

continuity of speech, exemplars that span T frames are considered.

Thus the speech and noise dictionaries are of size K · T × Js and

K · T × Jn, respectively.

Notice that the magnitude STFT exemplars are also non-

negative. In this work, we make use of two popular exemplar-based

decomposition schemes: the non-negative matrix deconvolution

(NMD) and non-negative matrix factorisation (NMF), which are

detailed below.

3.1. Compositional model using NMD

Here, we approximate the frame level speech and noise spectra using

the NMD-based model [11],

Y ≈ Ỹ =
T∑

t=1

St

(t−1)→

Xs and W ≈
T∑

t=1

Nt

(t−1)→

Xn . (4)

The matrix St denotes the t-th block matrix obtained by par-

titioning S into T block rows each of size K × Js [11]. Nt is

also defined in the same manner from N. The approximation is ob-

tained such that mixing weights or activations Xs and Xn are also

non-negative. This paper proposes a compositional model for noisy

reverberant speech as:

Z̃ =
L∑

p=1

T∑

t=1

[H]
p
⊚ St

τ→

Xs +
T∑

t=1

Nt

(t−1)→

Xn (5)

using (3) and (4), where τ = p + t − 2. The problem thus boils

down to estimating H and the activations, which are estimated so

as to minimize the Kullback-Leibler divergence between Z and Z̃

which is defined as:

DKLD (z‖z̃) = z log
z

z̃
+ z̃ − z. (6)

In addition, we also add sparsity constraints on the activations

to obtain a reliable approximation of speech and noise spectra with

randomly sampled exemplars. The resulting cost function is,

C = DKLD

(

Z‖Z̃
)

+ λs ·Xs + λn ·Xn. (7)

λs and λn penalise dense speech and noise activations, respectively.

To obtain H and the activations that minimize (7), we make use of

an iterative gradient-descend technique using multiplicative updates

given by

H← H⊙
▽−

H
C

▽+
H
C

(8)

where, ▽−
H
C and ▽+

H
C are the positive and the negative parts of

the derivative ∂C/∂H. To obtain the required derivatives, we apply

the chain rule,

∂C

∂H
= −

Z

Z̃

∂Z̃

∂H
︸ ︷︷ ︸

▽
−

H

+
∂Z̃

∂H
︸ ︷︷ ︸

▽
+

H

(9)

The ratio Z/Z̃ is done element-wise and let it be denoted as R. The

updates for the activations are also obtained in the same manner. The

multiplicative updates for all the unknowns can be obtained using

(9), (7) and (5) as given below (⊺ denotes the matrix transpose).

[H]p ← [H]p ⊙

∑F

l=1[Ỹ]l−p+1 ⊙ [R]l
∑F

l=1[Ỹ]l−p+1

Xs ← Xs ⊙

∑T

t=1

∑L

p=1 St
⊺

(

[H]p⊚
←τ

R

)

∑T

t=1

∑L

p=1 St
⊺

(

[H]p⊚
←τ

1

)

+ λs

Xn ← Xn ⊙

∑T

t=1 Nt
⊺
←τ

R

∑T

t=1 Nt
⊺
←τ

1 +λn

where, τ = p + t − 2, 1 is a matrix of ones of the same size as Z

and⊙ denotes element-wise multiplication. The operation
←τ

R shifts

the matrix to the left by removing the first τ columns and adding τ
zero columns to the right. The optimal parameters are obtained after

updating the RIR and activations in an alternating fashion for several

iterations. After every iteration, we apply a regularisation over H by

element-wise dividing all its columns by the first column and clamp

every column such that H(f, p) < H(f, p− 1). The rows of H are

also normalised to sum to one to obtain a bounded estimate.

The optimal frame-level estimates for clean speech Ỹ and noisy

reverberant speech Z̃ are then found using (4) and (5). From these
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estimates, we construct a time-varying filter G to obtain the en-

hanced complex-valued STFT, G⊙Z, where G is the element-wise

ratio G = Ỹ ⊘ Z̃. The enhanced speech is obtained using the over-

lap method from the enhanced complex-valued STFT.

3.2. Compositional model using NMF

This is based on the work presented in [6] where a similar model is

used for dereverberation of noise-free reverberant speech. We extend

this technique such that it also models noise and estimates H from

the clean speech estimate.

The NMF formulation operates on stacked vectors formed by T
consecutive frames of data [6]. For this, we use a sliding window of

length T frames over the frame axis of Z and the features belonging

to each window are stacked and stored as columns in the data matrix

Zst. For Z with F frames this will result in Nw = F − T + 1
windows and Zst will be of size K · T ×Nw . The RIR matrix H is

also stacked T times to obtain the stacked RIR Hst of size K ·T×L.

In this setting, the noisy reverberant speech is represented as,

Zst ≈ Z̃st =

L∑

p=1

[Hst]p ⊚ SXs + NXn (10)

The optimal set of parameters are obtained such that they minimise

the cost function (7) by replacing the frame-level features with the

stacked features. The multiplicative updates are obtained in similar

manner as explained in Section 3.1 and from [6] as:

H(k, p)← H(k, p)⊙

∑T

t=1

∑Nw

l=1 Ỹst(r, l − p+ 1)Rst(r, l)
∑T

t=1

∑Nw

l=1 Ỹst(r, l − p+ 1)

Xs ← Xs ⊙

∑L

p=1 S
⊺

(

[Hst]p⊚
←(p−1)

Rst

)

∑L

p=1 S
⊺

(

[Hst]p⊚
←(p−1)

1

)

+ λs

Xn ← Xn ⊙
Nt

⊺
Rst

Nt
⊺
1+ λn

where, Ỹst = SXst obtained from the current estimate of Xst,

r = k + (t − 1)K and Rst is the element-wise ratio between Zst

and Z̃st. The optimal values are obtained by iteratively applying

the above updates until convergence. Notice that the update is only

applied on the frame-level H at every iteration followed by stacking

it to obtain Hst. We also apply the same kind of regularisation on

H as in Section 3.1 during every iteration.

The gain function G
′ to enhance the noisy STFT using this set-

ting requires converting the stacked parameters into the frame-level

estimates. Notice that the estimate of a frame appears over different

overlapping windows and we sum those to obtain the frame-level es-

timates. Scaling with the number of overlapping windows is omitted

as it appears both on the numerator and the denominator of the gain

function. This procedure is in fact exactly the same as the opera-

tions defined in Equations (4) and (5) to obtain Ỹ and Z̃. The gain

function and the enhanced STFT are obtained as in Section 3.1.

4. EVALUATION SETUP

To evaluate and compare the settings described in this paper, devel-

opment set of the CHiME-2 WSJ0 corpus is used. It contains 410

utterances taken from the WSJ0 development set corpus that are arti-

ficially reverberated and added with realistic background noise [13].

The sampling frequency is 16 kHz. The database contains binau-

ral noisy reverberant speech at SNRs ranging from -6 dB to 9 dB in

steps of 3 dB. In addition, the performance on the noise-free rever-

berant speech is also evaluated. The stereo data is averaged across

the channels to obtain the single channel data.

For the NMD and NMF -based approaches, the STFT frame

length and frame shift are set to 25 ms and 10 ms, respectively. A

temporal context of T = 10 frames is used in all cases. To obtain the

exemplars for creating the dictionaries, we randomly choose training

data spanning 10 frames (115 ms) and its magnitude STFT is taken.

Only the positive half of the magnitude STFT is considered and are

reshaped to a vector to obtain an exemplar of length 2 560.

The clean training corpus of WSJ0 corpus is used to create the

speech dictionary which contain Js = 5000 randomly chosen ex-

emplars. The noise dictionary used in this work consists of two

parts: a fixed and a sniffed part. The fixed part of the dictionary

is constructed using 2 500 randomly chosen noise exemplars taken

from the background noise recordings provided with the CHiME-

2 dataset. The sniffed noise dictionary is created on the fly from

the embedded noisy utterances present in the database, that contains

5 seconds of noise context immediately before and after the utter-

ance. This provides knowledge about the noise from the immediate

context which can be beneficial for a better noise modelling in such

difficult tasks. The sniffed noise exemplars are created from these 10

seconds of data which yields almost 1000 sniffed exemplars. This

part is updated for every test utterance. The noise dictionary thus

contains 3 500 noise exemplars.

A sparsity penalty of λs = 1.6 and λn = 0.8 is used in all

formulations as used in our previous works [14,15]. The multi-

plicative updates are applied for 100 iterations with randomly ini-

tialised set of H and activations. We first evaluate the NMF and

NMD settings without any reverberation model (denoted as NMF

and NMD, respectively) and then various experiments are conducted

with incorporating the proposed reverberant speech model (denoted

as NMF+R and NMD+R, respectively) for various choices of RIR

lengths L.

To evaluate and compare the speech enhancement quality, we

use the signal-to-distortion ratio (SDR), PESQ [16], cepstral dis-

tance (CD) and segmental SNR (segSNR) measurements. The SDR

is obtained using the BSS evaluation toolkit [17] and CD is ob-

tained using the tool provided with the REVERB challenge [18]. We

also make use of improvements in these measures (∆SDR, ∆PESQ,

∆CD and ∆segSNR) for comparing the results. The ∆s are ob-

tained by subtracting the metric obtained on the noisy data from that

of the enhanced data for PESQ, SDR and segSNR measures (because

higher measures mean better performance). On the other hand, since

a lower CD implies a better performance, ∆CD is obtained by sub-

tracting the CD obtained for enhanced speech from that of the noisy

speech. In short, for all the ∆ measurements, higher values mean a

better performance.

The MATLAB codes for implementing the NMF and NMD

-based updates for jointly estimating the RIR and activations are

available in our webpage1 . Some examples of the noisy and en-

hanced speech using these techniques are also provided.

5. RESULTS AND DISCUSSION

5.1. Evaluation on noise-free data

This section details the experiments conducted on noise-free rever-

berant data. The experiments are conducted for various RIR lengths

1http://www.esat.kuleuven.be/psi/spraak/downloads/
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Fig. 1. Improvements in SDR, PESQ, CD and segSNR obtained for the various evaluated settings on the CHiME-2 WSJ0 database as a

function of the input SNRs. All figures use the same legends.

Setting SDR (dB) PESQ CD

No Enhancement 6.00 2.48 4.03

NMF 6.09 2.49 4.16

+RIR; L = 5 6.00 2.51 3.92

+RIR; L = 7 5.99 2.51 3.92

+RIR; L = 10 5.99 2.52 3.92

NMD 5.93 2.46 4.04

+RIR; L = 5 6.75 2.55 3.86

+RIR; L = 7 6.91 2.55 3.83

+RIR; L = 10 7.00 2.56 3.82

Table 1. Speech enhancement results obtained for the various eval-

uated settings with varying RIR length L on noise-free reverberant

speech. Best scores are highlighted in bold font.

and the corresponding SDR, PESQ and CD obtained are summarised

in Table 1. It is also verified that the multiplicative updates always

result in a decreasing cost.

It can be seen that introducing the proposed approaches result

in improvements for all the measures. The NMF-based approach

does not introduce noticeable improvements when evaluated on the

CHiME-2 noise-free reverberant data and a increasing the value of

L beyond 5 does not introduce much improvements. On the other

hand, the NMD-based approach provides significant improvements

for all the evaluated measures and increasing the RIR length yields

further improvements.

5.2. Evaluation on noisy reverberant data

The proposed approaches are evaluated on the noisy reverberant data

with a RIR length of L = 10. Figure 1 summarises the improve-

ments obtained for various measures. It can be seen that the proposed

approaches always result in a performance improvement when com-

pared to the settings where no reverberation model is used. In addi-

tion, we also include a baseline setting where the RIR is estimated

from both the speech and noise estimates as used in [12], which is

denoted as NMF1+R.

The NMF+R setting is found to outperform the NMF1+R setting

in all cases, validating the claim that the RIR estimate will be less re-

liable when it is estimated using both the speech and noise estimates.

Notice that, in the absence of a reverberation model, the NMF-based

technique yields a better denoising performance when comapared to

the NMD-based technique. This suggests that the NMF-based model

results in a better speech and noise estimate. However, the NMD+R

approach is still able to yield more or less comparable performance

with NMF+R once the reverberation model is introduced, suggest-

ing that the NMD+R formulation is a better model for estimating the

RIR.

The NMD+R approach outperformed the NMF+R technique for

positive SNRs in terms of PESQ, SDR and segSNR measurements.

This implies that adding the reverberation model to the traditional

NMD-based formulation equips the setting to estimate better approx-

imations of the underlying speech and noise.

6. CONCLUSIONS AND FUTURE WORK

This paper proposed a supervised speech derevereration technique

based on exemplar-based sparse representations for jointly esti-

mating the RIR together with the speech and noise estimates. A

novel formulation based on the NMD-based decomposition of noisy

speech is proposed along with an extension to an existing NMF-

based model. We also provide the update equations for estimating

the various parameters for both the formulations such that they min-

imize the Kullback-Leibler divergence between the observed noisy

reverberant data and its approximation. Evaluations on the develop-

ment set of CHiME-2 WSJ0 data show that the proposed techniques

yield better speech enhancement quality.

Introducing better regularisations on the RIR and incorporating

it as part of the cost function is a future work. Investigating the utility

of such a setting as a front-end for automatic speech recognition is

also a remaining work.
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