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ABSTRACT

An estimate of the power spectral density (PSD) of the late reverber-
ation is often required by dereverberation algorithms. In this work,
we derive a novel multichannel maximum likelihood (ML) estima-
tor for the PSD of the reverberation that can be applied in noisy
environments. Since the anechoic speech PSD is usually unknown
in advance, it is estimated as well. As a closed-form solution for
the maximum likelihood estimator is unavailable, a Newton method
for maximizing the ML criterion is derived. Experimental results
show that the proposed estimator provides an accurate estimate of
the PSD, and outperforms competing estimators. Moreover, when
used in a multi-microphone dereverberation and noise reduction al-
gorithm, the best performance in terms of the log-spectral distance
is achieved when employing the proposed PSD estimator.

1. INTRODUCTION

Reverberation and ambient noise may degrade the ability of mo-
bile devices, smart TVs and audio conferencing systems to process
speech signals. While intelligibility does not degrade in presence of
early speech reflections, it can be significantly deteriorated in rever-
berant environments due to overlap masking effects [1].

Both single- and multi-microphone techniques have been pro-
posed to reduce reverberation (see [2] and the references therein).
Many of these techniques require an estimate of the PSD of the re-
verberation (e.g. [3]). It should be noted that the estimation of the
reverberation PSD is a much more challenging task than the estima-
tion of the ambient noise PSD, since it is highly non-stationary and
since speech-absence periods cannot be utilized.

In [4], reverberation was modelled as a diffuse sound field with
time-varying level. Similarly to [5], the authors proposed to esti-
mate the time-varying level of the reverberation from the signals at
the output of a blocking matrix (BM) in a generalized sidelobe can-
celler (GSC) structure. The so-called error matrix of the reverberant
PSD at the output of the BM was assumed to be normally distributed
with zero-mean. The time-varying reverberation level was estimated
by maximizing the log-likelihood. In [6], the authors considered
two microphones and used a blind source separation algorithm to
separate the early speech component and the late reverberation com-
ponent. The estimated late reverberant signal was then used to com-
pute one single-channel Wiener filter that is applied to both micro-
phone signals. In [7] dereverberation for hearing aids applications
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is addressed, assuming a noise-free environment. A closed-form so-
lution for the ML estimate of the time-varying reverberation PSD
and of the anechoic speech PSD is then derived without using any
BM. In [8], the authors proved that the maximum likelihood esti-
mator (MLE) derived in [7], which circumvents the BM, has a lower
mean squared error than the MLE derived in [4], which uses the BM.
Recently, in [9], an optimal estimator for the reverberation PSD in
noisy environment was proposed. First, the received signals are fil-
tered by a BM to block the anechoic speech. Then, the likelihood of
the reverberation PSD given the signals at the output of the BM, is
maximized. However, since the BM processes the data and reduces
the number of available signals, applying the MLE at the output of
the BM might be sub-optimal.

In this work, an optimal estimator in the ML sense for the re-
verberation PSD in noisy environment is derived. The reverberation
PSD is modelled as a diffuse sound field with time-varying level,
while the noise PSD is assumed to be known. Since the anechoic
speech PSD is changing rapidly across time and is unknown in ad-
vance, the anechoic speech should be either blocked or estimated.
Since the blocking operation reduces the amount of information use-
ful for the estimation, we prefer to circumvent the blocking. There-
fore, the reverberation PSD and the anechoic speech PSD will be
jointly estimated. Due to the complexity of the probability density
function (p.d.f.), a closed-form solution cannot be derived. Instead,
an iterative Newton method for maximizing the ML is derived. For
the application of Newton’s iterations, the first- and second-order
derivatives of the log-likelihood are calculated in closed-form. An
experimental study using recorded noisy and reverberant speech sig-
nals demonstrates the benefits of the proposed algorithm in terms of
the late reverberation estimation accuracy. Moreover, it is shown that
when used in the multichannel Wiener filter for joint noise reduction
and dereverberation, the proposed estimator outperforms competing
estimators.

2. PROBLEM FORMULATION

Consider N microphone observations consisting of reverberant
speech and additive noise. The reverberant speech can be decom-
posed into two components, i.e., a direct speech component and a
reverberation component. The i-th microphone observation can then
be expressed as

Yi(m, k) = Xd,i(m, k) +Xr,i(m, k) + Vi(m, k), (1)

where Yi(m, k) denotes the i-th microphone observation with
time-index m and frequency index k, Xd,i(m, k) denotes the di-
rect speech component, Xr,i(m, k) denotes the reverberation, and
Vi(m, k) denotes the ambient noise. Here Xd,i(m, k) is modeled
as a multiplication of the anechoic speech S(m, k) (as received
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by the first microphone that was arbitrary chosen as the reference
microphone) and the relative direct-path transfer function (RDTF)
of the i-th microphone Gd,i(k), i.e.,

Xd,i(m, k) = Gd,i(k)S(m, k). (2)

For a plane wave the RDTF Gd,i(k) depends only on the time dif-
ference of arrival (TDOA) between the i-th microphone and the first
microphone that is denoted by τi, i.e.,

Gd,i(k) = exp

(
−j 2πk

K

τi
Ts

)
, (3)

where j =
√
−1, Ts is the sampling time, and K is the number

of frequency bins. The estimation of τi is beyond the scope of this
paper. The N microphone signals can be concatenated in a vector

y(m, k) = xd(m, k) + xr(m, k) + v(m, k)

where

y(m, k) =
[
Y1(m, k) . . . YN (m, k)

]T
xd(m, k) =

[
Xd,1(m, k) . . . Xd,N (m, k)

]T
= gd(k)S(m, k),

gd(k) =
[
Gd,1(k) . . . Gd,N (k)

]T
xr(m, k) =

[
Xr,1(m, k) . . . Xr,N (m, k)

]T
v(m, k) =

[
V1(m, k) . . . VN (m, k)

]T
.

The speech signal is modeled as a complex Gaussian process
with S(m, k) ∼ NC(0, φS(m, k)). The reverberation and the noise
components are assumed to be uncorrelated and may be modelled by
zero-mean multivariate Gaussian probability density functions. The
PSD matrix of the noise is assumed to be time-invariant and known
in advance (or can be accurately estimated during speech-absent pe-
riods). The PSD matrix of the reverberation is naturally time-variant,
since the reverberation originates from the speech source. On the
other hand, the spatial characteristic of the reverberation may be as-
sumed constant, as long as the speaker and microphones positions
do not change. Therefore, it is reasonable to model the PSD ma-
trix of the reverberation as a time-invariant normalized matrix with
time-varying level. Finally, the reverberation is modelled as

xr(m, k) ∼ NC (0, φR(m, k) Γ(k)) , (4)

where Γ(k) is the time-invariant spatial coherence matrix of the
reverberation and φR(m, k) is the temporal level of the reverbera-
tion. In the current contribution we assume that the reverberation can
be modelled using a spatially homogenous and spherically isotropic
sound field and determine Γ(k) accordingly [10, 11]

Γij(k) = sinc
(

2πk

K

di,j
Tsc

)
, (5)

where sinc(x) = sin(x)/x, di,j is the inter-distance between micro-
phones i and j and c is the sound velocity. Collecting all definitions,
the microphone signal vector is modelled as

y(m, k) ∼ NC
(
0,φS(m, k)gd(k)gH

d (k)

+ φR(m, k) Γ(k) + Φv(k)
)
, (6)

where Φv(k) is the PSD matrix of the noise.
The goal in this work is to estimate the late reverberation PSD

φR(m, k). Since the speech PSD φS(m, k) is unknown, it should
be estimated as well. Therefore, φR(m, k) and φS(m, k) will be
jointly estimated as a parameter set:

φ(m, k) =
[
φR(m, k) φS(m, k)

]T
. (7)

3. PROPOSED MAXIMUM LIKELIHOOD ESTIMATOR

In this section we derive the maximum likelihood estimator of the
parameter set φ(m, k). Whenever possible, the frequency index k is
omitted for brevity. The ML estimator of φ(m) is given by

φML(m) = argmax
φ(m)

log f (y(m); φ(m)) , (8)

where

f (y(m); φ(m)) =

1

πN |Φy(m)| exp
(
−yH(m)Φ−1

y (m)y(m)
)
, (9)

and Φy(m) = φS(m)gdg
H
d + φR(m) Γ + Φv. Since there is no

closed-form solution for the ML of φ(m), we propose to iteratively
determine the solution.

3.1. ML estimation using Newton’s method

In this work, the ML solution is obtained using the Newton’s method
(c.f. [12]):

φ(`+1)(m) = φ(`)(m)−H−1
(
φ(`)(m)

)
d
(
φ(`)(m)

)
, (10)

where d (φ(m)) is the first-order derivative of the log-likelihood
with respect to φ(m) and H (φ(m)) is the corresponding Hessian
matrix, i.e.,

d (φ(m)) ≡ ∂ log f (y(m); φ(m))

∂φ(m)
,

H (φ(m)) ≡ ∂2 log f (y(m); φ(m))

∂φ(m)∂φT(m)
. (11)

The first-order derivative d (φ(m)) is a 2-dimensional vector

d (φ(m)) ≡
[
DR (φ(m)) DS (φ(m))

]T
, (12)

with elements

Di (φ(m)) = Tr
[(

Φ−1
y (m)R(m)− I

)
Φ−1

y (m)
∂Φy(m)

∂φi(m)

]
,

(13)
for i ∈ {R,S} where

R(m) ≡ y(m)yH(m), (14)

∂Φy(m)

∂φR(m)
= Γ and ∂Φy(m)

∂φS(m)
= gdg

H
d . The Hessian is a 2× 2 matrix:

H (φ(m)) ≡
[
HRR (φ(m)) HSR (φ(m))
HRS (φ(m)) HSS (φ(m))

]
. (15)

Applying second derivative on DR (φ(m)) and DS (φ(m)) yields
the elements of H (φ(m)):

Hij (φ(m)) =

− Tr
[
Φ−1

y (m)
∂Φy(m)

∂φj(m)
Φ−1

y (m)R(m)Φ−1
y (m)

∂Φy(m)

∂φi(m)
+

(
Φ−1

y (m)R(m)− I
)
Φ−1

y (m)
∂Φy(m)

∂φj(m)
Φ−1

y (m)
∂Φy(m)

∂φi(m)

]
,

(16)
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where i, j ∈ {R,S}. Collecting all terms, the Newton’s method for
estimating φR(m) and φS(m) can be reformulated as

φ
(`+1)
R (m) = φ

(`)
R (m)−

[
HSS

(
φ(`)(m)

)
DR

(
φ(`)(m)

)
−HSR

(
φ(`)(m)

)
DS

(
φ(`)(m)

)]
1∣∣∣H(

φ(`)(m)
)∣∣∣ (17)

and

φ
(`+1)
S (m) = φ

(`)
S (m)−

[
HRR

(
φ(`)(m)

)
DS

(
φ(`)(m)

)
−HRS

(
φ(`)(m)

)
DR

(
φ(`)(m)

)]
1∣∣∣H(

φ(`)(m)
)∣∣∣ , (18)

where∣∣∣H(
φ(`)(m)

)∣∣∣ =

HRR
(
φ(`)(m)

)
HSS

(
φ(`)(m)

)
−H2

RS

(
φ(`)(m)

)
(19)

is the determinant of H
(
φ(`)(m)

)
. According to our experiments,

the Newton’s method converges after about 10-20 iterations.

3.2. Practical considerations

When implementing the iterative solution proposed above, some
practical issues should be considered:

Lower and Upper Bounds: The estimated PSDs φ(`)
R (m) and

φ
(`)
S (m) must be positive, and should therefore be restricted to the

(+,+) quadrant.
There is a minimum-point of the likelihood function when

φR
(`)(m) or φ(`)

S (m) approaches infinity. Also, the first-derivative
in (13) approaches zero when φR

(`)(m) or φ(`)
S (m) approaches

infinity. Thus, for large values of φ(`)
R (m) or φ(`)

S (m) there is a
hazard that Newton’s method will step to infinity. To prevent this
from occurring, we apply the following upper bound to φ(`)

R (m) and
φ
(`)
S (m):

Z(m) ≡ 1

N
yH(m)y(m)− 1

N
Tr [Φv] , (20)

which is equal to the instantaneous level of the observations minus
the average noise level.

Initialization: According to our experience, the log-likelihood
function exhibits only a single two-dimensional peak for positive
values of φR(m) and φS(m). However, for extreme cases the peak
may be located at negative values of φR(m) or φS(m). If the peak
is located in the (−,−) quadrant, φML

R (m) and φML
S (m) should be

set to zero and Newton’s method should becomes inactive. How-
ever, even when the peak is located in the (−,+) quadrant or in
the (+,−) quadrant, Newton’s method should becomes active to
find the point with the highest likelihood in the (+,+) quadrant.
We have therefore applied a simple initialization step. If DR (0)
and DS (0) are negative, we postulate that the peak is located in the
(−,−) quadrant. Then, φML

R (m) and φML
S (m) are set to zero (or a

small pre-defined value ε) and Newton’s procedure is skipped. Oth-
erwise, the Newton procedure becomes active and its initial value is
set to φ(0)(m) = 0. As mentioned above, the search is confined to
the (+,+) quadrant.

Algorithm 1: Multi-microphone reverberation and speech
PSD estimation in noisy environment.

for all time frames and frequency bins m, k do
Compute R̄(m) using (14) and (21).
Initialize by φ(0)(m) = 0.
if (DR (0) < 0) & (DS (0) < 0) then

φML
R (m) = φML

S (m) = ε
else

for ` = 0 to L− 1 do
Calculate φ(`+1)

R (m) and φ(`+1)
S (m) using (17)

and (18).
Confine φ(`+1)

R (m) and φ(`+1)
S (m) to the range

[ε, Z(m)].
end

end
end

Smoothing: The late reverberation PSD is expected to be
smooth over time. Smoothing stage may be carried out by time-
averaging of the instantaneous PSD matrix, i.e.,

R̄(m) = αR R̄(m) + (1− αR) R(m). (21)

where αR (0 ≤ αR < 1) is a smoothing factor. R̄(m) is used
to calculate the first- and second-order derivatives in (13) and (16)
instead of R(m). The proposed ML estimator is summarized in
Algorithm 1.

4. PERFORMANCE EVALUATION

The performance of the proposed estimator is evaluated by: 1) exam-
ining the log-error between the estimated value of φML

R (m) and the
true reverberation level, obtained by convolving the speech signal by
the late component of the acoustic impulse response; and 2) utilizing
the estimated PSD φML

R (m) in a speech dereverberation task.

4.1. Simulation setup

The experiments consist of reverberant signals plus directional noise
with various signal-to-noise ratio (SNR) levels. Spatially white (sen-
sor) noise was also added, with power 20 dB lower than the direc-
tional noise power. Anechoic speech signals were convolved by
room impulse responses (RIRs), downloaded from an open-source
database of our lab. Details about the database and RIRs identifi-
cation method can be found in [13]. Reverberation time was set by
adjusting the room panels, and was measured to be approximately
T60 = 0.61 s. The reverberant speech signals were mixed with di-
rectional noise signals with several SNR levels. The spatial PSD
matrix Φv was estimated using periods in which the desired speech
source was inactive. The loudspeaker was positioned in front of a
four microphone linear array such that the steering vector was set to
gd =

[
1 1 1 1

]T. The inter-distances between the micro-
phones were [3, 8, 3] cm. The sampling frequency was 16 kHz, the
frame length of the short-time Fourier transform (STFT) was 32 ms
with 8 ms between successive time-frames (i.e., 75% overlap). In
Algorithm 1, the smoothing parameter was set to αR = 0.95 and
ε = 10−10. The number of iterations was L = 10. All measures
were computed by averaging the results obtained using 50 sentences,
4–8 s long, evenly distributed between female and male speakers. In
Fig. 1, a contour plot of the observed signals p.d.f. (9) is depicted
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Fig. 1. Example of the observed signals p.d.f. (9) (for single T-F bin)
w.r.t. the late reverberation PSD and the speech PSD.

(for a single T-F bin). It is evident that only one maximum as a func-
tion of the late reverberation PSD and the speech PSD exists. The
dashed line depicts the convergence of the Newton iteration to this
maximum.

4.2. Accuracy of the ML estimator

The performance of the proposed estimator was compared to three
existing estimators in terms of log-error between the estimated PSD
and the oracle PSD: 1) the estimator in [4], denoted henceforth
Braun2013, 2) the estimator in [14]1, denoted henceforth Lefkim-
miatis2006 (assuming the signals are time-aligned), and 3) the ML
estimator in [9] which initially blocks the direct path. For each
algorithm, an identical lower and upper delimitation and identical
smoothing were carried out as explained in Section 3.2. It should
be noted that in [14] it is explicitly assumed that the direct-paths are
time aligned prior to the PSD estimation.

The mean log-errors between the estimated PSD levels and the
oracle PSD levels are presented. In order to calculate the oracle PSD
levels, the anechoic speech was filtered with the reverberation tails
of the RIRs. The reverberation tails were set to start 2 ms after the
arrival time of the direct-path. To reduce the variance of the oracle
PSD, the mean value of the oracle PSDs over all microphones was
computed. The log-error results for several SNR levels are depicted
in Fig. 2. The results bars are split to distinguish between underesti-
mation errors and overestimation errors.

It is evident that the proposed estimator outperforms the ML es-
timator in [9] in terms of overall log-error for all evaluated SNRs.
The proposed estimator also outperforms Braun2013 [4] for an SNR
of 5 and 10 dB. Lefkimmiatis2006 [14] outperforms all competing
estimators for all evaluated SNRs. For a yet unknown reason, this
result is not reflected to the dereverberation performance as shown
in the next section.

4.3. Dereverberation performance

The performance of the proposed estimator is also examined by
utilizing the estimated PSDs for joint dereverberation and noise
reduction. The estimated PSDs were used to compute the multi-
channel Wiener filter presented in [3]. The multichannel Wiener
filter (MCWF) was designed to jointly suppress the power of the
total interference (e.g. the reverberation and the noise) by estimating

1Note that the algorithm in [14] aims to estimate the noise variance given
the received signals PSD matrix while the noise coherence matrix is assumed
to be known. In our implementation, we treat the reverberation as an additive
noise, and we estimate its level while we subtract the ambient noise PSD
matrix from the received signals PSD matrix.
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Fig. 2. Log-errors of the proposed late reverberation PSD estimator
in comparison with [4], [14] and [9]. The upper part of each bar
represents the underestimation error, while the lower part represents
the overestimation error.

SNR 5 dB 10 dB 15 dB

Unprocessed 1.33 (9.42) 1.53 (8.08) 1.73 (6.91)
Oracle φR(m) 1.93 (5.79) 2.04 (5.36) 2.10 (5.09)

Braun2013 [4] 1.81 (6.32) 1.94 (5.71) 2.05 (5.36)
Lefkimmiatis2006 [14] 1.84 (6.15) 2.01 (5.67) 2.10 (5.35)
ML with blocking [9] 1.92 (6.21) 2.04 (5.66) 2.12 (5.30)
ML without blocking 1.89 (6.18) 1.99 (5.61) 2.08 (5.27)

Table 1. PESQ (and LSD in brackets) scores for the MCWF [3]
using various estimators.

the minimum mean square error (MMSE) estimation of the direct-
path. The MCWF was implemented by a two stage approach: a
minimum variance distortionless response beamformer followed by
a corresponding post-filter. The performance of the dereverbera-
tion algorithm was evaluated in terms of two objective measures,
commonly used in the speech enhancement community, namely per-
ceptual evaluation of speech quality (PESQ) [15] and log-spectral
distance (LSD). The clean reference for evaluation in all cases was
the anechoic speech signal filtered only with the direct path of the
RIR. In Table 1 the performance measures for several input SNR
levels are depicted. The proposed estimator outperforms all compet-
ing estimators with respect to the LSD measures. As for the PESQ
scores, the ML estimator in [9] that explicitly blocks the direct-path
outperforms all competing estimators.

5. CONCLUSIONS

In this work a joint ML estimator for the late reverberant PSD and
the anechoic speech PSD was derived that can be used in noisy envi-
ronments. The proposed algorithm maximizes the log-likelihood of
the received signals using Newton iterations. In contrast to previous
work [9] the speech PSD was estimated rather than blocked. The
fact that the proposed PSD estimator uses allN microphone signals,
rather than N − 1 signals due to the blocking matrix, might explain
why the proposed estimator performs better. An experimental study
demonstrated the advantage of the proposed PSD estimator when
used in combination with a multichannel Wiener filter for joint noise
reduction and dereverberation.
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