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ABSTRACT
We present an algorithm for clustering complex-valued unit
length vectors on the unit hypersphere, which we call com-
plex spherical k-mode clustering, as it can be viewed as a
generalization of the spherical k-means algorithm to normal-
ized complex-valued vectors. We show how the proposed
algorithm can be derived from the Expectation Maximiza-
tion algorithm for complex Watson mixture models and prove
its applicability in a blind speech separation (BSS) task with
real-world room impulse response measurements. It turns out
that the proposed spherical k-mode algorithm is on par with
other state-of-the-art BSS algorithms in terms of signal-to-
inference ratio gains although being far easier to implement
and using fewer calculations.

Index Terms— Directional statistics, speech separation,
clustering, complex hypersphere, sparseness

1. INTRODUCTION

We consider the recovery of individual speech signals from
reverberant mixtures corrupted by noise. Approaches to blind
speech separation (BSS) include Independent Component
Analysis (ICA) based [1] and sparseness based methods,
where an early approach is time frequency masking [2].
While the first is mostly restricted to scenarios where the
number of sensors is at least as large as the number of sources,
the second can also be employed in the underdetermined case
with fewer sensors than sources. Other approaches rely on
dictionary learning, such as nonnegative matrix factorization
[3, 4].

Due to the sparseness of speech in the short time Fourier
transform (STFT) domain [2] one can assume under fairly
general conditions that each time frequency (tf) slot is occu-
pied by a single speech source only, or by noise. BSS then
amounts to determining which source is dominant in each tf
slot and estimating the source parameters from those tf slots
assigned to this source. Since the former depends on the lat-
ter and vice versa, iterative algorithms are employed. They
can be derived from the well-known Expectation Maximiza-
tion (EM) algorithm, where the resulting algorithm depends
on which features are computed from the microphone signals
and by which statistical model they are described [5, 6].

The most prominent models used in this context are Gaus-
sian mixture models (GMMs) where a wide range of features

have been compared in the context of k-means clustering [7].
A fairly recent model is a complex Watson mixture model

(cWMM). It is a statistical model for the vector of micro-
phone signals in the STFT domain, after normalization to unit
length. The key motivation for this normalization is that it de-
couples the transmission path related features, namely phase
and level differences between the microphone signals, from
the source related features, namely absolute phase and signal
energy [5, 8, 9]. Due to the fact that the complex Watson dis-
tribution [10] is sensitive to level and phase differences but in-
variant with respect to the absolute phase, it ideally accounts
for the transmission path related features only.

In this contribution we will derive a clustering algorithm,
which is an approximation to the EM algorithm applied to
observations drawn from the cWMM. We call this algorithm
complex spherical k-mode clustering and show that it relates
to the EM for cWMMs in much the same manner as the fa-
mous k-means algorithm [11] to a GMM and the spherical
k-means to a mixture of von Mises-Fisher distributions [12].

In the following, we will first describe the signal model
and review the EM algorithm for cWMMs. From this we will
then derive a clustering algorithm and relate it to Lloyd’s k-
means algorithm [11]. Finally, we will analyze the proposed
algorithm in terms of signal to interference ratio (SIR) gains
and show, that it is on par with alternative algorithms, while
requiring significantly less computational effort.

2. SIGNAL AND STATISTICAL MODEL

Let us assume a convolutive mixture ofK independent source
signals Sft1, . . . SftK captured byD sensors in the STFT do-
main:

Yft =

K∑
k=1

HfkSftk + Nft, (1)

where Yft, Hfk and Nft are the D-dimensional vector of
the microphone signals, the acoustic transfer function vector
from the k-th source to the D microphones, and the vector
of noise signals, respectively. Here, t and f denote the time
frame and frequency bin, respectively.

The unit-length normalized observations are then ob-
tained as follows:

Ỹft =
Yft

Aft
, where Aft =

√
YH
ftYft. (2)
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Since speech signals are sparse in the STFT domain, we
may assume that a time frequency slot is occupied either by a
single source and noise or by noise only.

Since all frequencies are treated equally, we will drop the
frequency index in the following.

The normalized observation vectors Y = {Ỹt|∀t} form
clusters on the D-dimensional complex unit hypersphere for
each frequency bin f independently. Their distribution is
modeled by a cWMM, where θ = {πk, κk,Wk|∀k} is the
parameter set, comprising the mixture weight πk, concentra-
tion κk, and mode direction Wk for each class k. The class
labels C = {ct|∀t} are assumed to be categorically distributed
with probabilities πk, k = 1, . . . ,K.

The hierarchical generative model consists of first sam-
pling an indicator variable from the categorical distribution
followed by sampling from the corresponding complex Wat-
son distribution:

p(Ỹt) =

K∑
k=1

πkp(Ỹt|ct = k), (3)

p(Ỹt|ct = k) =
1

cW(κk)
eκk|ỸH

t Wk|2 . (4)

Here, cW is a normalization constant [10].
The parameter set θ can be estimated via the EM algo-

rithm [5], which is performed for each frequency bin sepa-
rately. During the E-step, the source posteriors are computed

γtk := P (ct = k|Ỹt) =
P (ct = k)p(Ỹt|ct = k)∑K
k=1 P (ct = k)p(Ỹt|ct = k)

(5)

while the M-step delivers the parameter updates. For the mix-
ture weights we obtain

πk = Nk/T, where Nk =

T∑
t=1

γtk, (6)

where T is the total number of frames.
The estimate for the mode direction Wk is the principal

component, i.e., the eigenvector with the largest eigenvalue,
of the weighted correlation matrix Φk:

Wk = P {Φk} , where Φk =
1

Nk

T∑
t=1

γtkỸtỸ
H
t . (7)

The concentration parameter κk is obtained by solving the
implicit equation:

1F1(2, D + 1, κk)

D 1F1(1, D, κk)
= WH

k ΦkWk, (8)

where the right hand side is simply the eigenvalue belonging
to Wk and 1F1(·, ·, ·) is the confluent hypergeometric func-
tion.

3. SPHERICAL K-MODE ALGORITHM

Now we introduce similar approximations as in the derivation
of the k-means algorithm from the EM for GMMs.

The main simplification is a quantization of the posteriors
γtk. We introduce the hard class assignments

ĉtk =

1, k = argmax
k̃

γtk̃,

0, else.
(9)

This is motivated by the fact, that the assumption in the
first place was a sparse signal model, where, despite the mix-
ture at the input, each tf slot is dominated by a single source.

We further assume equal mixture weights, πk = π for
all k, and shared concentration parameters κk = κ for all
k. Using this in Eq. (5) with the definition of the complex
Watson distribution in Eq. (4) we arrive at:

k = argmax
k̃

πk̃
1

cW(κk̃)
eκk̃|Ỹ

H
t Wk̃|

2

= argmax
k̃

e|Ỹ
H
t Wk̃|

2

= argmax
k̃

|ỸH
t Wk̃|

2.

(10)

It finally turns out, that the class affiliations can be determined
by simply maximizing the squared cosine distance between
the normalized observations Ỹt and the class dependent mode
directions Wk.

Thus, the complexity of the E-step is greatly reduced, be-
cause the evaluation of the complete probability density func-
tion is replaced by the computation of the square of an inner
product of two vectors. The complexity of the M-step is also
reduced, since it is no longer necessary to estimate the con-
centration parameters and mixture weights.

The mode direction still remains to be the principal com-
ponent of the covariance matrix of normalized observations
using the newly derived class affiliations:

Wk = P


(

T∑
t=1

ĉtk

)−1 T∑
t=1

ĉtkỸtỸ
H
t

 . (11)

The relation between the proposed clustering algorithm
and the EM for the cWMM is the same as the relation be-
tween Lloyd’s k-means algorithm [11] and the EM for the
GMM, or between the spherical k-means algorithm and the
EM for a mixture of von Mises-Fisher distributions [12]. In
all these cases, soft assignments are replaced by hard class
affiliations, and both class priors and class conditional vari-
ances/precisions are neglected.

The proposed clustering algorithm differs from k-means
in the distance function used (squared cosine distance vs. Eu-
clidian distance) and in the way the prototypes are computed
(principal component vs. sample mean). Similarly, it differs
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from the spherical k-means [13] in the distance function used
(squared cosine distance vs. cosine distance) and in the way
the prototypes are computed (principal component vs. nor-
malized sample mean).

Especially the fact that the phase offset of each vector is
caused by the signal source and is unrelated to the transmis-
sion path shows, that a simple Euclidean distance will not
yield meaningful clusters in the considered BSS problem, nei-
ther does a cosine distance without calculating its squared ab-
solute value.

4. EXTENSION TO NOISE-ONLY OBSERVATIONS

Up to now, the clustering algorithm has been derived for con-
current speakers only. To extend the algorithm to account for
observations which contain only noise and no speaker signal,
we can simply add an additional class for noise and cluster
the observations into K ′ = K + 1 classes.

This is particulary accurate for directed noise sources but
is sufficiently accurate for spherically isotropic noise models
as well, as will be seen by the experimental results. For a
spherically isotropic noise field one assumes uniformly dis-
tributed noise sources in the 3D space. Following [14] this
does not lead to equal eigenvalues of the noise covariance
matrix and, therefore, does not lead to uniformly distributed
noise on the complex unit hypersphere.

5. PERMUTATION ALIGNMENT

Since the described algorithms operate independently on each
frequency, a well-known permutation problem arises: Even
if the source separation were perfect for each frequency bin,
it is likely, that component one of one frequency bin does
not correspond to the same speaker as component one of an-
other frequency bin. In order to reconstruct the individual
sources, the labels for each frequency have to be reordered
to match each other along all frequencies. For the experi-
mental results reported here we employed a clustering algo-
rithm similar to the EM algorithm reported in [15], which is
based on maximizing the intra-class similarities from vectors
afk = (γf1k, . . . , γftk, . . . , γfTk) containing the a posteriori
probabilities γftk in each frequency bin.

6. PERFORMANCE EVALUATION

We employed room impulse response measurements from the
MIRD database [16], which were resampled to 16 kHz. They
were convolved with speech segments of 5 s length obtained
from the TIMIT database [17].

These acoustic room impulse responses correspond to a
linear array consisting of D = 6 sensors of type AKG CK32
with sensor distances 3 cm, 3 cm, 8 cm, 3 cm, and 3 cm. The
K = 2 speech sources are placed on a half circle in front
of the linear array with an angular difference of 60◦ and a
distance of 1m from the array center.

An artificially generated spherically isotropic noise field
was generated by the algorithm presented in [14] and added
to the speech images at the sensors. The STFT was then ap-
plied to the aforementioned signals with an FFT size of 1024
samples, a shift of 256 samples and using a Blackman win-
dow.

We have chosen K ′ = K + 1 normalized observations at
random and used them as initial values for the mode direc-
tions. For the EM-algorithm, the initial weights and concen-
trations have been set to 1/K ′ and 20, respectively.

After the EM or the clustering algorithm had estimated the
mode vectors, the signals are then reconstructed using a lin-
early constrained minimum variance (LCMV) beamformer:

HLCMV = Φ−1NNHall(H
H
allΦ

−1
NNHall)

−1g, (12)

where ΦNN is the covariance matrix of the observations Y
masked with the noise mask, Hall is the (D × K ′)-matrix
of relative acoustic transfer function estimates Wk obtained
from either Eq. (7) or (11). Further, g is the response vector
which is set to one for the desired source and is set to zero for
all sources to be suppressed.

Fig. 1 shows the performance in terms of the SIR gain
as defined in [18] for three different reverberation times T60
of 0.16 s, 0.36 s and 0.61 s, respectively. The following algo-
rithms were compared:

• k-means with k-means++ initialization [19], Euclidean
distances and prototypes calculated by a mean opera-
tion. It operates on Y̆t = Ỹt exp(−j arg Y1t).

• k-mode is the proposed spherical k-mode clustering al-
gorithm, see Sec. 3.

• EM algorithm for cWMM as in Sec. 2.

• IT13 is our implementation of the permutation-free
BSS algorithm of [9]. It also employs a cWMM.

• IT13+PA: Although the algorithm of [9] does not re-
quire a permutation alignment, we found that it can still
be improved by an additional permutation alignment.

We calculate the SIR gain intrusively by estimating the
beamforming vectors on the observed signal and applying
the beamforming vector to each signal image separately. We
opted to not use BSSEval as in [18] since due to the simu-
lation setup we had the source images available and did not
need to rely on an additional estimation.

The results in Fig. 1 and Fig. 2 summarize 100 simulations
for each setting and each algorithm. They are presented as
box plots, where the box starts at the 25% quantile q1 and
ends with the 75% quantile q3 while the line inside the box
indicates the median. The small whiskers mark the values
q3 + 1.5(q3 − q1) and q1 − 1.5(q3 − q1) and the outliers are
presented as plus signs.

At first, it can be observed that our implementation of
IT13 did not perform well on the given scenario. It achieved
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Fig. 1: SIR gain for different algorithms and different rever-
beration times (T60) and spherically isotropic noise with an
SNR of 15 dB.

the lowest SIR gain of the tested algorithm and the scatter of
the results was large. For example, the algorithm achieved
a median SIR gain of 13.1 dB in scenarios with a reverbera-
tion time of 360ms and a noise level of 15 dB. We therefore
decided to combine it with an additional permutation align-
ment step to provide a solid baseline for the other compared
algorithms. This additional step increased its performance by
3.6 dB to a solid SIR gain of 16.7 dB.

IT13 with additional permutation alignment, the EM and
the k-mode algorithm achieved comparable SIR gains, as can
be seen from Fig. 1. For example, in scenarios with a re-
verberation time of 360ms and a noise level of 15 dB the
proposed spherical k-mode achieved a median SIR gain of
16.3 dB whereas the EM algorithm achieved 17.0 dB. The
proposed algorithm therefore shows a 0.7 dB gap to the best
performing algorithm.

On the contrary, the k-means with k-means++ initializa-
tion and with additionally phase normalized features achieved
a median SIR gain of 14.4 dB, which is clearly inferior.

Fig. 2 now shows the same algorithms in different noise
conditions. It can be observed that the relative performance
of the algorithms remains the same, irrespective of the input
SNR: k-mode, EM, and IT13+PA achieve similar SIR gains,
while k-means is clearly less effective. Further, not surpris-
ingly, the SIR gain consistently increases with increasing in-
put SNR.

To get a feeling of the computational complexity, Table 1
lists the number of operations for the key algorithmic parts
for each of the investigated methods. The greatest speed-
up of the k-mode algorithm in comparison to the EM algo-
rithm is achieved by the replacement of the likelihood calcu-
lations by squared cosine similarity calculations. This dras-
tically reduces the computation time of the E-step, while the
effort in the M-step is dominated by the eigenvalue decom-
position and thus remains largely unaffected. The k-means
algorithm further drastically reduces the computational effort
of the M-step. Note that in the original EM algorithm the E-
step and the M-step require approximately the same computa-
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Fig. 2: SIR gain for different algorithms and fixed reverber-
ation time of T60 = 360ms and spherically isotropic noise
with varying SNR.

Table 1: Number of selected operations per frequency for
each algorithm: calculated likelihoods, eigenvalue decompo-
sitions, solved implicit equations, permutations. The number
of iterations is I .

k-means k-mode EM IT13 IT13+PA

#likelihoods 0 0 TKI TKI TKI
#eigenv. 0 IK IK IK IK
#implicits 0 0 IK IK IK
#permutes K2 K2 K2 IK! IK!+K2

tion time. It is worth noting, that the k-means uses additional
input normalization and simply replacing the principal com-
ponent analysis in the k-mode algorithm by a mean operation
yields much worse results. We decided against reporting ac-
tual CPU times, since we implemented the different parts in
different languages.

7. CONCLUSIONS AND
RELATION TO PRIOR WORK

We have presented a novel clustering algorithm for obser-
vations on a complex unit hypersphere. It has been used in
a blind source separation scenario and shows comparable or
even superior performance to existing algorithms, while at the
same time being considerably less computationally complex.

The work presented here can be viewed as an extension of
prior work in two respects. First, it is a simplification of our
early proposed EM algorithm for BSS [5] having a much sim-
pler E-step, while achieving similar source separation perfor-
mance. Second, it is shown that it relates to the EM algorithm
for cWMM in the same way as the spherical k-means algo-
rithm to the EM for a mixture of von Mises-Fisher distribu-
tions [13, 12]. We therefore believe that the proposed spher-
ical k-mode algorithm can find applications beyond speech
source separation in fields, where complex-valued directional
data are to be modeled and analyzed, such as in statistical
shape analysis.
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