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ABSTRACT

Radial filter design for processing near field speech sources over

a spherical microphone array is challenging. Polynomial based ra-

dial filter design procedures have been proposed in earlier work. In

this paper we address the issue of radial filter design using a fam-

ily of orthogonal polynomials called the Gegenbauer polynomials.

The radial filters designed using this approach indicate an improved

radial response and greater efficiency in attenuating distant sources.

Improved white noise gain and directivity index are also noted from

experimental evaluations. The radial filters hence designed are used

to separate directionally co-incident near field speech sources. Sub-

jective evaluation is conducted on separated sources using measures

like LSD, PESQ, and SDR. The subjective evaluation scores are mo-

tivating enough to be considered for practical speech and audio ap-

plications.

Index Terms— Radial Filters, Source Separation, Spherical Mi-

crophone Array.

1. INTRODUCTION

Spherical Microphone Arrays have been actively used for sound field

analysis, room acoustic measurements and spatial filtering applica-

tions. This is due to the ease of performing array processing in

spherical harmonic domain [1]. Sources can also be resolved with-

out spatial ambiguity using a spherical microphone array. Near field

spherical microphone array processing has received a lot of atten-

tion from researchers in the past decade. In [2], a robust adap-

tive beamformer for near-field sources has been formulated. This

work is based on the idea of far-field LCMV (Linear Constrained

Minimum Variance) beamformer. A near-field source localization

method based on SH-MUSIC (Spherical Harmonic MUltiple SIgnal

Classification) appeared in [3]. Methods for constructing directional

beamformers at varying radial distances have been proposed in [4],

[5] and [6] but they do not talk about radial filters explicitly. The

radial filtering capabilities of a spherical array for near-field sources

has been comprehensively studied in [7]. The near-field criterion in

terms of array order, frequency and location has been systematically

defined herein. In [8], this idea was extended to the far-field Dolph-

Chebyshev beamformer to develop a Dolph-Chebyshev radial filter,

capable of attenuating far-field interferences given a source close to

the array surface. In [9], the capability of this radial filter was tested

for real speech signals. Some additional methods for radial filter de-

sign have also been presented in [10]. The radial filters presented in

most studies are polynomial-based as originally proposed in [10].

In [10], the authors have worked with low-order polynomials

and the Chebyshev polynomial. However, this paper presents a de-
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Fig. 1. Magnitude of the spherical Hankel function, hn(krs) for

orders n = 0 (bottom) to n = 4 (top).

sign methodology for radial filters using a family of orthogonal poly-

nomials called the Gegenbauer polynomials [11]. Design of these

filters is presented along with their performance analysis based on

the White Noise Gain (WNG) and Directivity Index (DI). These ra-

dial filters are also used in the separation of directionally co-incident

sources. Subjective quality of the separated sources is assessed on

the basis of measures such as LSD, PESQ and Signal-to-Distortion

Ratio (SDR).

The paper is organized as follows. In section 2, the near-field

array processing method is reviewed. The near-field criteria is stated

next. In section 3, the polynomial-based radial filter design method

using the Gegenbauer polynomials is detailed. This is followed by

an analysis of radial response using WNG and DI. Section 4 presents

experiments with source separation. Section 6 concludes the paper.

2. NEAR-FIELD SPHERICAL MICROPHONE ARRAY

PROCESSING

Array processing is performed in the spherical harmonic domain

(SH-Domain) because of its ability to decouple angle-dependent and

frequency-dependent components [12]. Additionally, spherical wave

fronts can provide important spatial cues which can be exploited in

the design of efficient spatial filters. Let, the pressure at any point in

a sound field be represented by p(k, r,Ω), where k is the wave num-

ber, r is the radial distance from the origin and Ω = (θ, φ) is the

angular position of the point of interest. For a point source located

at (rs,Ωs), pressure at (r,Ω) is given by [13],

p(k, r,Ω) =

∞
∑

n=0

n
∑

m=−n

bsn(k, r, rs)[Y
m
n (Ωs)]

∗Y m
n (Ω) (1)

where, Y m
n (Ω) is a spherical harmonic of order n and degree m and

the asterisk, [.]∗, refers to the complex conjugate. bsn(k, r, rs) is the

near-field mode strength factor given by,

bsn(k, r, rs) = i−(n−1)kbn(kr)hn(krs) (2)
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Fig. 2. Plots of the far-field mode strength bn(kr) (dashed lines)

and the near-field bn(k, r, rs) (solid lines) for rs = 1m and orders

n = 0 (top) to n = 4 (bottom).

Here, bn(kr) is the far-field mode strength factor, defined as,

bn(kr) =

{

4πinjn(kr), for open sphere

4πin(jn(kr)−
j′
n
(kr)

h′

n
(kr)

), for rigid sphere
(3)

where, jn is the spherical Bessel function, hn is the spherical Hankel

function and j′n and h′
n are their respective derivatives. It can be

seen from Equation 2 that the radial behaviour of the point source is

determined by the spherical Hankel function as shown in Figure 1.

Taking the spherical Fourier Transform of Equation 1, sound

field at the array surface in the SH-Domain is obtained as [1],

pnm(k, a) = bsn(k, a, rs)[Y
m
n (Ωs)]

∗
(4)

where a is the radius of the SMA. Spatial sampling introduced due

to the finite number of microphones on the array surface limits the

array order N following the inequality I > β(N + 1)2 [14], where

I is the number of microphones and β is determined by the chosen

sampling scheme [15]. Having acquired the pressure field at array

surface, the final array output is given by,

y(k) =

N
∑

n=0

n
∑

m=−n

w∗
nm(k)pnm(k) (5)

where, wnm is the spherical Fourier transform of the spatial weight-

ing function w(Ωi). Designing a spatial filter requires an involved

computation of this weighting function [16].

2.1. Near-field Criterion in Spherical Harmonic Domain

Traditionally, Fraunhofer and Fresnel distances were used for find-

ing the transition from the near-field to the far-field of a sensor array.

A novel method for finding out the border between the near and far

fields was proposed in [7]. In this work, the magnitudes of the mode

strength factors of the two cases, i.e. |bsn(k, r, rs)| and |bn(kr)|, are

compared to study the equivalence. It can be observed from Figure 2

that after krs ≈ n, the two functions start behaving in a similar man-

ner. Thus for krs < n, the near-field behaviour is evident. Hence,

for an array of order N , the near-field criteria rNF is given by

rNF ≈
N

k
(6)

For an array of radius a, the highest allowable wave number to avoid

spatial aliasing is given by kmax = N/a, as discussed in [17]. Thus,

for a point source to be located in the near-field, the constraint on rs
is given by a < rs < rNF .

3. RADIAL FILTER DESIGN USING A FAMILY OF

ORTHOGONAL POLYNOMIALS

The distance of the point source from the array surface is usually not

known. In such cases, to obtain an array output that is spherically

symmetrical about the look direction, following weighting function

is used [10],

w∗
nm(k) =

dn(k)

i−(n−1)kbn(ka)
Y m
n (Ωl) (7)

where, Ωl is the look-up direction and dn are called the design co-

efficients. Using Equations 4 and 5 the array output can be rewritten

as,

y(k) =
N
∑

n=0

dn(k)hn(krs)Pn(cosΘ) (8)

where, Θ is the angle between Ωs and Ωl and Pn(.) is the Legendre

function of order n. The additivity property of spherical harmonics,

used to arrive at Equation 8, involves a factor of (2n+1)/4π which

is absorbed in dn here for notational convenience. For the design of

the radial filter we assume that the directional location of the point

source is known. Thus assuming Θ = 0, the array response in the

look direction is given by,

y(k) =
N
∑

n=0

dn(k)hn(krs) (9)

The spherical Hankel function can be expanded using power-

polynomials [18]. The array output can now be written as,

y(z) = h0

(

ka

z

)

[

N
∑

n=0

dn(k)

n
∑

m=0

cnm(k)zm
]

(10)

where,

cnm(k) =
i(m−n)

m!2m
(n+m)!

(n−m)!
(ka)−m

and z =
ka

x
(11)

The term in square brackets is an N th order polynomial in z. This

polynomial is equated to another order-N polynomial exhibiting the

desired radial filter pattern as,

N
∑

n=0

dn(k)

n
∑

m=0

cnm(k)zm =

N
∑

n=0

qnz
n

(12)

Equation 12 can be written in matrix form as,

C
T

d = q (13)

where, d = [d0 d1 ... dN ]T and q = [q0 q1 ... qN ]T . C is an

(N +1)× (N +1) invertible matrix with C(i, j) = ci−1
j−1 for i ≥ j,

zero otherwise. Finally, one can obtain the design coefficients as,

d = (C−1)T q (14)

Thus, given a desired pattern, radial filter design can be obtained

[10].

Chebyshev polynomials have been used for designing radial fil-

ters using the above method in [8]. In this paper, the Gegenbauer

polynomial family [11] is chosen to assess the scope of this method

in designing filters with varying radial response. Gegenbauer poly-

nomial family is a class of polynomials which are orthogonal with re-

spect to the weighing function (1−x2)α−1/2 on the interval [−1 1],
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Fig. 3. Magnitude response of the radial filter for α = 0.5, N = 3,

R = 1000 and k = 1

Fig. 4. Magnitude response of the radial filter with α = 0.5, N = 3,

R = 1000 and k = 1, for varying rs and Θ

where α is a parameter greater than −0.5. Many standard polyno-

mials belong to this family, like, Legendre polynomial (α = 0.5),

Chebyshev polynomial of the first kind (α = 0) and Chebyshev

polynomial of the second kind (α = 1). As |α| is increased from

zero, magnitudes of local maxima and minima increase along with

the curvature of the polynomial. Consider a polynomial of this fam-

ily given by

P (z) =
1

R

N
∑

n=0

pnx
n
0 z

n
(15)

where, pn is the nth coefficient of the polynomial, x0 is a scaling fac-

tor that decides the root positions and R controls the maxima/minima

of the polynomial. Using Equations 12 and 13, we can write,

C
T

d =
1

R
X0p (16)

where, X0 = diag(x0
0, x

1
0, ..., x

N
0 ) and p = [p0 p1 ... pN ]T . Hence,

the design coefficients can be computed as,

d =
1

R
(C−1)T X0p (17)

Figure 3 illustrates the radial response of a filter designed using

Gegenbauer polynomial with α = 0.5 (Legendre polynomial), order

N = 3, R = 1000, k = 1 and a = 5 cm. x0 has been chosen

such that the polynomial root lies at a distance of 1 m resulting in
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Fig. 5. Variation of WNG for different α and N = 4.

a notch at that position. The decrease in magnitude with increas-

ing radial distance makes these filters suitable for attenuating distant

inferences. Figure 4 shows the spectral magnitude response of the

filter. It can be seen that though the notches are effective in atten-

uating the undesired sources the gain at the desired radial distance

is not very high. Other filters can be designed in a similar manner

by varying polynomial type, order and notch positions. Choosing a

higher order results in more complex filter designs.

4. PERFORMANCE ANALYSIS

In this section, the radial filters constructed using different Gegen-

bauer polynomials have been evaluated on the basis of White Noise

Gain (WNG) and Directivity Index (DI). Experiments have been per-

formed on two sizes of spherical arrays, namely, a small size array

with radius 5 cm, and a medium size array with radius 10 cm.

4.1. White Noise Gain (WNG)

WNG is the ratio of the signal-to-noise ratio (SNR) at the array out-

put to the SNR at the array input [19]. It can be obtained using [10],

WNG = I
|
∑N

n=0 dn(k)hn(krs)(2n+ 1)|2

∑N
n=0 |

dn(k)
bn(ka)

|2(2n+ 1)

×
1

∑∞

n=0 |bn(ka)hn(krs)|2(2n+ 1)
(18)

Simulations show that for lower order filters (N = 1, 2 or 3), there

is no variation in WNG with change in α. This is because lower or-

der Gegenbauer polynomials differ only in a scaling factor which is

eventually normalized during processing. For higher orders (N = 4
and above), as α increases, WNG increases steadily and saturates

after a certain value. This can be seen in Figure 5, where a medium

sized array with N = 4 has been used. The difference between

maximum (for α = 100) and minimum (for α = −0.5) WNG val-

ues in this case is approx 5dB. Table 1 shows such differences for

other higher orders. All these radial filters typically show a low-pass

behaviour. However at higher order, they tend to deviate from this

behaviour at higher frequencies.

4.2. Directivity Index (DI)

The directivity index (DI) is a measure indicating the improvement

in directivity of an array compared to an omni-directional micro-

phone. Theoretically, it is the ratio of the array output in the look

direction to the combined array output over all directions [20]. DI is

computed in this work as,

DI = 10 log10 (Q) (19)
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Order N Maximum WNG range

4 5dB

5 10dB

6 5dB

Table 1. Range of maximum WNG obtained for −0.5 < α < 50,

and varying order N .
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Fig. 6. Variation of DI with k and α for order N = 4.
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Fig. 7. Variation of DI with k and rs for N = 4 and α = 0.

where, Q is the directivity factor given by,

Q =
|
∑N

n=0 dn(k)hn(krs)(2n+ 1)|2
∑N

n=0 |dn(k)hn(krs)|2(2n+ 1)
(20)

It can be seen from Figure 6 that, directivity improves, and ulti-

mately saturates, with increasing α. This is in the case of polyno-

mials with order greater than 3. It is observed that DI also exhibits

low-pass behaviour which tends to get sharper with increasing poly-

nomial order. Figure 7 shows the variation of DI for varying radial

positions of the source. Directivity decreases with increasing source

distance which indicates that directional response is lost in the far-

field of the array.

5. EXPERIMENTS ON SOURCE SEPARATION

The radial filters presented herein are suitable for close-talk appli-

cations. They are capable of attenuating distant sources effectively

in comparison to their natural 1/rs decay. In this section, we assess

Radial distance of Interference LSD PESQ SDR

6 cm 0.54 2.52 5.11

8 cm 0.49 2.62 8.98

10 cm 0.44 2.69 12.41

Table 2. Source Separation performance for order N = 2.

Fig. 8. Experimental setup for coincidental source separation. S1

and S2 are placed at different radial distances from the centre of an

Eigenmike R© SMA.

α LSD PESQ SDR

-0.5 0.43 2.59 27.90

0 0.46 2.52 23.68

0.5 0.49 2.47 21.19

1 0.50 2.43 19.50

5 0.56 2.33 14.37

50 0.62 2.27 10.93

Table 3. Source Separation performance for order N = 4 with

interfering source at a radial distance of 10 cm at an SIR of 0 dB.

the performance of the proposed filters, through MATLAB R© simula-

tions, in separating directionally co-incident near field sources (see

Figure 8). Efficiency of the designed filters is evaluated based on

three standard performance evaluation criteria, namely, Log-spectral

Distance (LSD), Perceptual Evaluation of Speech Quality (PESQ),

and Signal-to-Distortion Ratio (SDR).

A 32-microphone Eigenmike R© [21] with radius 4.2 cm has been

used for this purpose. A desired source (s1) is placed at 5 cm from

the array centre and an interfering source (s2) is placed at different

test positions beyond it. The initial signal-to-interference ratio is 1.

It was verified that for order less than 4, changing the polynomial

does not result in a separate filter design. Table 2 presents the eval-

uation outcomes for different positions of the interfering source (6

cm, 8 cm and 10 cm) for a 2nd order radial filter (any α). As the

array order increases, performance improves. For an order N = 4,

when the interfering source is placed 10 cm away from the array, the

results are shown in Table 3. It can be seen that filters designed using

smaller value of α exhibit better source separation. The PESQ val-

ues primarily lies between 2 and 3, which appears to be a reasonably

good score.

6. CONCLUSION

In this paper, radial filter design for separating near field sources is

proposed. The method uses a family of orthogonal polynomials in

contrast to earlier work. It was observed that certain polynomials of

the family provided better performance in terms of WNG and Di-

rectivity Index, while others provided better source separation for

sources placed near the array surface. The results are motivating

enough to be considered in medium sized spherical arrays with upto

fifty microphones and in speech and audio applications where source

and interference are directionally co-incident. Future work will ex-

plore constrained optimisation formulations for improving the gain

of the radial response in the look radius.
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