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ABSTRACT

Until now, distributed acoustic beamforming has focused on opti-
mizing for a beamformer over an entire network, with each node
contributing to the beamformer output. We present a novel approach
that introduces sparsity to this beamformer computation, where we
attempt to optimize for a subset of nodes within the network that
produce SNR gains roughly equivalent to that of the optimal MVDR
case. Due to the physical nature of sound, this approach trades a
small loss in SNR for a large reduction in communication power and
iterations required to produce a beamformer output by reducing the
active node set of our network. Our approach operates in a fully
distributed and asynchronous manner and does not require a high
update iteration rate to produce an output at each sample.

Index Terms— Distributed, sparse, beamforming, sensor net-
works

1. INTRODUCTION

Beamforming, or spatial filtering, is a signal processing technique
used to enhance the transmission or reception of electromagnetic
(EM) or acoustic signals by exploiting the interference properties of
waves. Arrays of transmitters or receivers are required to produce a
range of observations signals followed by a weighted averaging that
optimally combines the various observations [1]. This results in, for
example, higher fidelity speech recordings when using an array of
microphones in the presence of noise and interference [2]. However,
as these arrays become large the cost of centrally optimizing and
computing our beamformer output becomes prohibitive.

With recent advancements in sensor networks [3, 4, 5, 6, 7] a
natural progression for beamforming is its distribution over a set of
self-contained nodes, each equipped with microprocessors, wireless
EM communications and acoustic sensors. These nodes are assumed
to be within communication range of only a local subset of the total
nodes in the network. A distributed beamforming system should re-
duce total transmission energy required within the network, provide
robustness to the addition or removal of nodes, eliminate the problem
of a central master node failure, lower the coordination or calibration
cost associated with setting up a large distributed network, and facil-
itate scalability of the beamformer to arbitrary network sizes [8].

One of the earliest distributed beamforming implementations for
wireless sensor networks was by Bertrand and Moonen [9, 10] who
distributed the processing of a linearly constrained minimum vari-
ance beamformer, which is a generalisation of the minimum vari-
ance distortionless response (MVDR) beamformer. Their method
does not assume prior knowledge of the noise covariance matrix and
can handle a full covariance matrix. However, their system does
assume the network is fully connected (or connected in a tree topol-
ogy, depending on the implementation method) and that each node

k is equipped with multiple sensors. Additionally an ordering of the
computations in the nodes is required.

The distributed delay-and-sum beamformer developed by Zeng
and Hendriks [11] iteratively broadcasts information between neigh-
bouring nodes using a randomized gossip protocol [12]. The ap-
proach requires no restriction on the network topology and may per-
form updates independently across all nodes. However, the noise
at all nodes must be uncorrelated and assumed known, resulting in
suboptimal performance in the presence of general correlated inter-
ference. The message-passing based MVDR beamformer of [13] op-
erates on scalar values in an asynchronous manner to perform weight
vector optimization, does not require global convergence or collec-
tion phase for weight updates, and may be used in arbitrarily con-
nected networks. However, the performance of the resulting MVDR
beamformer is limited by the network topology as the interferences
of non-neighbouring nodes are assumed to be uncorrelated. This is
compounded by the requirement of the covariance matrix to be di-
agonally dominant, which is accomplished in [13] by an artificial
damping of all off-diagonal elements. The diffusion-based MVDR
beamformer of [14] is adaptive to varying interference statistics, only
requires a single update per iteration, and approximates a full MVDR
centralized beamformer with two-hop covariances. However, each
node ultimately ends up with a large vector containing every node
in the network’s weight value as well as require the projection of
this vector onto the linear constraint subspace. This limits the algo-
rithm’s true distributed nature, particularly in very large networks.
Additionally, convergence can be slow due to the gradient optimiza-
tion employed. All three of the above methods also require a global
averaging at each time sample to produce a beamformer output.

More recently, the distributed privacy-protecting beamformer of
[15] requires each node to hold a vector (with length on the order
of the network size) of covariances with all other nodes, which is
impractical and potentially impossible in very large networks. The
LCMV beamformer of [16] assumes a fully connected network, but
does contain details on how to extend the approach for more gen-
eral networks. However, this extension requires node coordination to
prune the partially connected network to a tree topology which intro-
duces costly system overheads. Suboptimal approaches such as the
time-frequency masking procedure in [17] and the related pseudo-
coherence beamformer of [18] require less transmission power when
compared with the above methods by utilizing sub-arrays of the total
network. However, these approaches lack the flexibility to change
their sub-array size depending on whether higher fidelity or lower
power consumption is desired.

The contributions of this paper are a novel approach to dis-
tributed beamforming using sparsity, and a fully asynchronous and
independent method for accomplishing this. Instead of computing
a full network-wide MVDR beamformer we aim to find a subset of
nodes and the associated beamformer that are optimal for a given
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sparsity level. We therefore describe a distributed sparse beam-
former that approximates a full MVDR beamformer with a sparsity
tradeoff parameter, using the bi-alternating direction method of mul-
tipliers [19, 20, 21] for distributed optimization. The traditional
MVDR beamforming cost function is regularized with an l1 penalty
of the weight vector to encourage sparsity in the final optimized
weight vector. This reduces the number of nodes that contribute
to the final beamformer output, simplifying the aggregation step
required at each time sample and greatly improving the practicality
of the distributed beamforming system.

2. SYSTEM MODEL AND BACKGROUND

We consider a network of nodes denoted by the set N with car-
dinality N = |N |. The network is connected by a set of edges
E with cardinality E = |E|. If there exists an edge between two
nodes k and l we say (k, l) ∈ E . All nodes are considered self-
connected. The node and edge sets together form our network graph
G = (N , E). The set of all nodes sharing an edge with a node k is
denoted as its neighbourhood Nk with cardinality Nk = |Nk|, i.e.
Nk = {l|(k, l) ∈ E}.

We denote our wideband signal of interest as s0(t, ω), with t and
ω indexing the time sample and frequency subband, respectively. Let
uk(t, ω) denote node k’s observed noisy signal at time t and subband
ω that is a combination of the desired signal s0(t, ω), interferences
sp(t, ω) and additive noise vk(t, ω). dk0(ω) and dkp(ω) represent
the complex acoustic transfer functions that scale and phase shift
each subband of the source and interference signals, respectively,
which are constant over time. We may then express the linear receive
model at node k of our source signal, P interferers, and noise as

uk(t, ω) = dk0(ω)s0(t, ω) +

P∑
p=1

dkp(ω)sp(t, ω) + vk(t, ω),

= dk(ω)s(t, ω) + nk(t, ω).
(1)

The noise and interference can be combined into the variable
nk(t, ω) for convenience, allowing us to drop the 0 subscripts
on dk0(ω)s0(t, ω). When multiple sensors, such as microphones,
are used we may represent the acoustic transfer functions to each
sensor as the vector d(ω) ∈ CN , allowing us to express a vector of
noisy observations across these sensors as

u(t, ω) = d(ω)s(t, ω) + n(t, ω), (2)

where {u(t, ω), n(t, ω)} ∈ CN are the vectors of observations and
interferences from all N sensors, respectively.

Beamforming aims to estimate the source signal s(t, ω) by com-
bining the noisy observations in a weighted sum to produce a single
scalar output

z(t, ω) = wH(ω)u(t, ω), (3)
where z(t, ω) is the beamformed output, (·)H represents Hermitian
transposition, andw(ω) ∈ CN is the weighting vector used to com-
bine the observations. Since the signal is assumed to be independent
over each frequency bin ω and for all time twe will simplify notation
by omitting these indices henceforth.

The traditional MVDR beamformer [1, 2] is obtained by mini-
mizing the energy of the beamformed output signal subject to unity
gain in the direction of the source, which may be expressed by the
constrained optimization problem

minimize E[|wHu|2],

subject to dHw = 1,
(4)

which can be solved using Lagrange multipliers as

w =
R−1d

dHR−1d
, (5)

where R = E[nnH ] is the noise covariance matrix, and the source
signal is assumed independent of the noise. The MVDR beamformer
requires only knowledge of the source location (or equivalently the
acoustic transfer functions d at each node) and knowledge of the
noise statistics in the form of the covariance matrix R.

Thoughout the remainder of the paper we will assume a common
mapping from the complex domain CN to the real domain of twice
the dimensionality R2N in order to focus on the distributed convex
optimization techniques employed. For the sake of brevity we omit
the conversion of our problem, and for notational simplicity we will
refer to our problem as one in RN . For details see, for example,
[22].

3. DISTRIBUTED BIADMM BEAMFORMER

In this section we present the motivation for a sparse distributed
beamformer, followed by the derivation of our system.

3.1. Physical Motivation for Distributed Sparse Beamforming

Previously, emphasis has been placed on creating fully distributed
solutions to the traditionally centralized problem of MVDR beam-
forming. These methods ideally aim to produce a beamformer out-
put that is equal to the centralized case, but approximations are often
introduced to deal with the restriction of the network topology or
the nature of the distributed algorithm being used. The most com-
mon approximations are limitations on the structure of the noise co-
variance matrix, such as the requirement of diagonal dominance or
a sparsity structure representative of the underlying network graph.
However, as of the time of this paper no work has yet dealt with the
approach of optimizing for a sparse weight vector.

In very large networks, nodes distant from a source may prac-
tically capture none of the signal of interest, yet nearly all of the
distributed beamforming methods reviewed require a mixing (or av-
eraging) process across the entire network to produce a beamformer
output at each signal sample. For networks on the order of 50 nodes
(roughly the number used for simulation in the literature) the num-
ber of iterations required to reach convergence per sample is not a
problem, but for network sizes where these distributed beamform-
ing algorithms would actually be beneficial (at least on the order of
thousands of nodes) the iteration time and associated communication
cost required become infeasible.

One way of reducing the costly global mixing process is to en-
courage sparsity in our beamforming weight vector. Since those
nodes closest to our source location are likely to be in the presence of
a relatively high signal-to-noise ratio (due to the physical fall-off of
sound power over distance), a sparsely optimized weight vector will
naturally produce zero entries in nodes far from our source. Once we
arrive at our sparse weight vector we may produce our beamformer
output in one of three ways: we may perform the costly mixing pro-
cess across the whole network; we may form a subnetwork with the
nodes containing nonzero weight vector entries and perform a more
efficient mixing over this far smaller network; or we may simply des-
ignate a single node (such as the node closest to the source) as our
collection node for the current sample window and instruct all nodes
with nonzero weight values to transmit to this collection node. Since
all nonzero nodes will, in most cases, be physically near to the source
the transmission distances required will generally not be prohibitive.
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3.2. Derivation of the sparse distributed BiADMM beamformer

The proposed distributed sparse beamformer requires two separate
operations. Firstly, the network will optimize (in a fully distributed
manner) the weight values at all nodes while encouraging sparsity in
these weights. This process will be independent and asynchronous at
each node and requires communication only between neighbouring
nodes. Additionally, this optimization process can be performed at
any update rate without requiring network-wide convergence in a
short time (such as between signal samples). Given these sparse
weight values, we next require an aggregation operation to collect
the weighted observations into a single scalar output. As mentioned
previously, this may be done in multiple ways but we will restrict
ourselves to single-node collection for the purpose of demonstrating
the effectiveness of the sparse BiADMM beamformer.

3.2.1. Optimization of the Weighting Vector

We begin by optimizing for a scaled version of the weight vector
x∗ = R−1d, where (·)∗ refers to an optimal point, since the beam-
former output is then simply the ratio of two averages [23]

z∗ =
x∗Tu

x∗Td
=

1
N

∑
k∈N [x

∗]Tk [u]k
1
N

∑
k∈N [x

∗]Tk [d]k
, (6)

where (·)T represents transposition and [·]k denotes the kth element
of a vector. Additionally, we would like to encourage sparsity in
our optimized vector through the addition of an l1 penalty on the
resulting vector x. Therefore, in order to obtain the optimal sparse
vector x∗ we construct the unconstrained, l1-regularized quadratic
program

minimize f(x) =
1

2
xTRx− dTx+ α‖x‖1, (7)

where α is our regularization parameter and ‖ · ‖l is the l1 norm,
widely known to encourage sparsity in our optimization solution [24,
25]. Next, we make an approximating assumption that nodes more
than two communication hops apart are uncorrelated allowing us to
decompose the quadratic term (as in [14]), resulting in

minimize
∑
k∈N

(
1

2
xTkRkxk − dTk xk

)
subject to Ak→lxk +Al→kxl = 0 ∀(k, l) ∈ E ,

(8)

where the local vector xk ∈ RNk is node k’s estimate of the ele-
ments of x belonging to its neighbourhood Nk, Rk = (C†2 ◦R) ∈
RNk×Nk is the covariance matrix for the neighbourhoodNk that we
assume to be estimated within each neighbourhood, dk ∈ RNk is a
vector containing all zeros apart from the kth entry that is equal to
node k’s scalar ATF dk, the matrices Ak→l ∈ R2×Nk and Al→k ∈
R2×Nl contain entries of 1, −1 or 0 to enforce consistency (with
one row each for the consensus of node k and l’s primary elements
and their copies) and C†2 is the protected elementwise inverse of the
square of the adjacency matrix [26, 14].

In order to include the l1-regularization term and to facilitate the
computation of the Fenchel conjugate of our cost function, we con-
sider each node k to have a virtual pair node k+N , connected only to
node k, that holds the l1 penalty for node k. Since the l1 norm is sep-
arable across each element of x we may simply assign each virtual
node the absolute value of the scalar [x]k as their penalty function.
These virtual nodes will have consistency between the primary ele-
ment of node k and their own scalar variable xk+N enforced via con-
sensus constraints, similar to those discussed above for the quadratic

decomposition. For notational simplicity we denote N as the set of
all physical nodes responsible for the quadratic penalty terms, and V
(with cardinality V = |V|) as the set of all virtual nodes responsible
for the l1-regularization penalty terms.

We now arrive at two distinct local cost function forms that cap-
ture the quadratic and l1-regularization terms of our original prob-
lem, i.e.

fk(xk) =


1
2
xkRkxk − dTk xk for k ∈ N

α|xk| for k ∈ V.
(9)

These result in an equivalent problem to (7) when summed over all
real and virtual nodes:

minimize
N+V∑
k=1

fk(xk)

subject to Ak→lxk +Al→kxl = 0 ∀(k, l) ∈ E .

(10)

Finally, in order to use the BiADMM algorithm [21] we require the
Fenchel conjugates for our local cost functions of (9). These may be
derived independently (due to the formulation of our problem using
virtual nodes) as

f∗k (A
T
k λk) =



1
2
λkAkR

−1
k ATk λk

+dTkR
−1
k ATk λk

+ 1
2
dTkR

−1
k dk for k ∈ N

‖ATk λk‖α∞ for k ∈ V,

(11)

where ATk λk =
∑
k∈Nk

ATk→lλk|l. Using the local primal cost
functions (9) and the local conjugate cost functions (11), we may
now derive the BiADMM primal and dual variable update equations,
as described in [21]. The primal update equations are

xi+1
k =



(
∑
l∈Nk

ATk→lAk→l +Rk)
−1

(
∑
l∈Nk

ATk→l(λ
i
l|k

−Al→kxil) + dk) for k ∈ N

(−bk + sgn(bk)min{|bk|, α})
(ATk→lAk→l)

for k ∈ V,

(12)

where bk = (2xiTl A
T
l→kAk→l−ATk→lλil|k), sgn(·) is the sign func-

tion, and min{·} outputs the minimum of the set {·}. The dual up-
date equations are

λi+1
k|l =


λil|k −Al→kxil
−Ak→lR−1

k (dk + zk) for k ∈ N

Pα∞(2λiTl|kλk|l − xiTl ATl→k) for k ∈ V.

(13)

where INk is the Nk ×Nk identity matrix, Pα∞(c) is Euclidean pro-
jection of c onto the rectangular set {c| − α ≤ c ≤ α} [27], and

zk = (
∑
l∈Nk

ATk→lAk→lR
−1
k + INk )

−1
∑
l∈Nk

ATk→l(λ
i
l|k

−Al→kxil −Ak→lR−1
k dk).

(14)

In practice, when a node k randomly triggers for updating it would
perform both the quadratic primal/dual updates, followed by its vir-
tual node (k+N)’s l1 primal/dual updates since these are both phys-
ically the same node. The primal and dual variable update equations
are asynchronous, fully distributed, and may be performed continu-
ously over time at any rate deemed appropriate.
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3.2.2. Computation of the Beamformer Output

For each signal sample we require a collection phase where the noisy
observations from throughout the network are weighted and summed
to produce our beamformed output signal. At each time sample t
we therefore must perform sharing and averaging iterations many
times for information to mix throughout the network. However, as
we will show in our simulation results, information at distant nodes
within the network often provide negligible performance gains. For
the sake of our sparse BiADMM beamformer we simply transmit the
weighted observations of our active nodes to a single collection node
(designated as the node closest to the source).

4. EXPERIMENTAL RESULTS

In this section we describe our simulation setup and present some
experimental results.

4.1. Experimental Setup

We simulated a network with N = 50 microphone nodes and a
source signal randomly placed in a 100 m ×100 m ×100 m free-
space environment. The results are averaged over 20 realizations.
The distances from node k to all other nodes were assumed to be
known and neighbours were truncated to fall within a transmission
distance of 50 m. The acoustic transfer function for each node was
generated using the free-space model. The signal of interest was a
20 s speech sample randomly chosen from a 60 s recording. The in-
terference was a randomly placed zero-mean Gaussian point source
with power equal to −5 dB, 0 dB, and 5 dB when compared to the
source signal. Estimation of the partial covariance matrix was as-
sumed beforehand. The sample rate at each node was fs = 16 kHz
and processing was carried out on 25 ms Hann windowed blocks
with a 50% overlap. The weight vector optimization process was
performed asynchronously.

4.2. Results

Figure 1 shows the convergence of the BiADMM weight vector op-
timization for various signal-to-noise ratios, where these iterations
were performed once per signal sample. We observe a linear de-
crease in weight vector mean squared error until the noise floor be-
gins to slow convergence.

Figure 2 shows the effect of sparsity on our output SNR and on
the communication power required for beamformer outputs per sam-
ple, when compared with the fully active MVDR node set (which
uses distributed averaging for sample output). Due to our local co-
variance matrix approximation we see a drop of around 3 dB from
the optimal case when all nodes are active, with a loss of at most
7 dB as our active node set falls to below 10 nodes. Communica-
tion power required for output (using [28] for only power amplifier
transmission with free space parameters) in our sparse system using
single node collection is initially higher than distributed averaging
due to the expense of long range wireless communication with dis-
tant active nodes. However, our sparse system rapidly becomes more
efficient as these distant (low fidelity nodes) are excluded, falling to
around 15 % of the power required for distributed network-wide av-
eraging.
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5. CONCLUSION

We have motived, designed and tested a sparse distributed beam-
forming system that trades SNR performance for reduced inter-node
power consumption. The l1 norm is a natural first application of reg-
ularization to the problem due to the physical fall-off of sound power
over distance and the resulting node fidelity pattern, particularly for
large and sparse networks. Our system optimization performs up-
dates that are asynchronous, independent, and do not rely on global
collection phases. Additionally, since distant nodes generally have
their weights optimized to zero the sampling synchronization errors
encountered in large networks, required for beamformer output, are
reduced. Further work would include a convergence analysis for reg-
ularized BiADMM over graphs and research into more appropriate
regularization functions that, for example, explicitly take into ac-
count the fidelity of each node and their distance from the source.
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