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ABSTRACT

Fundamental frequency estimation is a very important task in many
applications involving periodic signals. For computational reasons,
fast autocorrelation-based estimation methods are often used despite
parametric estimation methods having superior estimation accuracy.
However, these parametric methods are much more costly to run. In
this paper, we propose an algorithm which significantly reduces the
computational cost of an accurate maximum likelihood-based esti-
mator for real-valued data. The computational cost is reduced by ex-
ploiting the matrix structure of the problem and by using a recursive
solver. Via benchmarks, we demonstrate that the computation time
is reduced by approximately two orders of magnitude. The proposed
fast algorithm is available for download online.

Index Terms— Fundamental frequency estimation, Toeplitz-
plus-Hankel solver, fast algorithm

1. INTRODUCTION

Many processes are cyclical in nature and, therefore, generate peri-
odic signals. Examples of such processes are encountered in a large
variety of application such as music processing [1, 2], speech pro-
cessing [3, 4], sonar [5], order analysis [6], and electrocardiography
(ECG) [7, 8]. An analysis of periodic signals often involves the esti-
mation of the fundamental frequency which describes the lowest rate
at which the process repeats itself. Consequently, many fundamental
frequency estimators have been suggested in the scientific literature,
and these can, rather coarsely, be dichotomised into two groups of
methods. In one group, the methods are non-parametric and based
on the autocorrelation function [9]. These methods are typically
computationally cheap, but have a suboptimal estimation accuracy
and are not robust to noise. In the second group, the methods are
based on a signal model whose parameters are typically estimated
based on some statistical criterion [2]. They have a good estimation
accuracy, but are in general computationally expensive. The maxi-
mum likelihood (ML) estimator [10, 11] is a good example of this
since it is optimal from an estimation theoretic perspective, but very
costly to compute. Primarily for this reason, the scientific literature
on speech and audio processing mainly employs the methods from
the first group. In this paper, however, we reduce the computational
cost of the ML estimator significantly, thus making it a viable alter-
native to the autocorrelation-based methods.
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The signal model for a uniformly sampled and periodic signal in
additive, white Gaussian noise e(n) is given by

x(n) =

l∑
i=1

[ai cos(iω0n)− bi sin(iω0n)] + e(n) (1)

where ai and bi are the linear weights of the i’th harmonic compo-
nent and ω0 is the fundamental frequency in radians per sample. If
an N -dimensional data set {x(n)}n0+N−1

n=n0
is observed, the signal

model can be written in a vector form as

x = Zl(ω0)αl + e (2)

where we have defined

x =
[
x(n0) · · · x(n0 +N − 1)

]T (3)

e =
[
e(n0) · · · e(n0 +N − 1)

]T (4)

Zl(ω) =
[
Cl(ω) Sl(ω)

]
(5)

Cl(ω) =
[
c(ω) c(2ω) · · · c(lω)

]
(6)

Sl(ω) =
[
s(ω) s(2ω) · · · s(lω)

]
(7)

c(ω) =
[
cos(ωn0) · · · cos(ω(n0 +N − 1))

]T (8)

s(ω) =
[
sin(ωn0) · · · sin(ω(n0 +N − 1))

]T (9)

αl =
[
aTl −bTl

]T (10)

al =
[
a1 · · · al

]T (11)

bl =
[
b1 · · · bl

]T
. (12)

The scalars n0 and l are the start index and the unknown model order,
respectively. The former is going to play an important role later. For
the model in (2), the ML estimate can be derived as in [12] to

ω̂0 = argmax
ω0∈Ωl

JNLS(ω0, l) (13)

where Ωl is a subset on (0, π/l) and

JNLS(ω0, l) = xTZl(ω0)
[
ZTl (ω0)Zl(ω0)

]−1

ZTl (ω0)x (14)

is the non-linear least squares (NLS) cost function for a model order
of l. We have here opted for the term NLS since this term is con-
ventionally used for the cost function in (14). Note, however, that
the NLS and the ML estimators are identical for the model in (2).
Unfortunately, the NLS cost function has numerous sharp peaks so
gradient based methods work very poorly for finding the maximiser.
Instead, the cost function is often evaluated on a grid followed by
a line search to refine the estimate [13]. When the model order is
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Algorithm 1 The standard algorithm for computing the NLS cost
function matrix [J ]l,f = JNLS(ω0, l) where the row indices are the
L model orders and the column indices are the F fundamental fre-
quencies on the Fourier grid. The notation � and [·]i,k denotes
element-wise multiplication and element (i, k), respectively. Note
that the vector functionml(ω0,f) is a selection function that forms
the vectorwl(ω0) as described in Sec. 2.2.1.

1: f = fft(x) . O(F logF )
2: [J ]1,1:F = 2N−1(f∗ � f)T . O(F )
3: for l ∈ {2, 3, . . . , L} do
4: for f ∈ {2, 3, . . . , dF/(2l)e} do
5: ω0 = 2π(f − 1)/F . O(1)
6: wl(ω0) = ml(ω0,f) . O(1)
7: Solve ZTl (ω0)Zl(ω0)αl = wl(ω0) for αl . O(l3)
8: [J ]l,f = wT

l (ω0)αl . O(l)
9: end for

10: end for

unknown, we have to compute an estimate for all candidate model
orders before we can use model detection criteria such as AIC, MDL,
and BIC [14–18] to determine the fundamental frequency estimate
of the most likely model. Thus, if the set of candidate model or-
ders is {1, . . . , L}, L NLS cost functions of the form in (14) should
be computed on a grid. In this paper, we propose an algorithm for
speeding up these computationally costly grid-based evaluations.

In (2), we have used the real-valued signal model for a periodic
signal. Although most periodic signals are real-valued, a complex-
valued representation is often used instead for analytical and com-
putational reasons. We recently demonstrated the latter point in [19]
where we reduced the computational complexity of the ML esti-
mator for the complex-valued signal model corresponding to (2).
This was achieved by exploiting the Toeplitz structure of the com-
plex analogue to ZTl (ω0)Zl(ω0). In the real-valued case, however,
ZTl (ω0)Zl(ω0) has a much more complicated block Toeplitz-plus-
Hankel structure so the proposed algorithm in [19] cannot directly be
applied to the real-valued case. Instead, we reformulate the problem
so that an efficient and recursive Toeplitz-plus-Hankel solver can be
used. This reduces the computational complexity of computing the
fundamental frequency estimate on an F -point uniform grid for all
model orders l ∈ {1, 2, . . . , L} from O(F logF ) + O(FL3) (see
Algorithm 1) to justO(F logF )+O(FL). The latter order of com-
plexity is the same as that of the popular harmonic summation (HS)
method [20,21] which can be interpreted as an approximation to the
ML estimator (see more in Sec. 2.1).

2. FAST EVALUATION OF THE NLS COST FUNCTION

In this section, we derive the algorithm for significantly reducing
the cost of computing the NLS cost function on an F -point uniform
grid for all model orders l ∈ {1, 2, . . . , L}. This step is the most
costly step in most NLS- and MUSIC-based fundamental frequency
estimators such as the recently proposed Bayesian estimator in [13].
First, however, we briefly outline the standard algorithm for making
the above computations and outline how the harmonic summation
method reduces the cost significantly by making a simple approxi-
mation.
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Fig. 1. Example of the exact NLS and HS cost functions. N = 100,
L = 10, ω0 = 2π/N , and constant amplitude

√
a2
i + b2i = 1, i ∈

{1, . . . , L}.

2.1. Standard Algorithm and Harmonic Summation

The standard algorithm for computing the NLS cost function on an
F -point uniform grid for all model orders l ∈ {1, 2, . . . , L} is out-
lined in Algorithm 1. Unless L is very small (relative to N ), the
main cost is to solve the problem in line 7. The total cost of run-
ning Algorithm 1 is O(F logF ) + O(FL3). In HS, line 7 is re-
placed by (N/2)αl = wl which is justified by the asymptotic re-
sult that limN→∞ 2N−1ZTl (ω0)Zl(ω0) = I2l where I2l is the
2l × 2l identity matrix.. This reduces the cost of solving the prob-
lem in line 7 from O(l3) to O(l). Thus, the total cost of HS is
O(F logF ) + O(FL). In Fig. 1, examples of the NLS and HS
cost functions are shown. Clearly, HS is inaccurate when the funda-
mental frequency is low (see much more on this in [12]), but this is
currently the price to pay to reduce the computational complexity. In
the next section, however, we show how the NLS cost function can
be computed with the same order of complexity as HS. That is, we
derive an algorithm for solving the problem in line 7 of Algorithm 1
in linear complexity.

2.2. A Fast Algorithm

The proposed fast algorithm is based on five key observations which
are described in details in the next five sections. To keep the notation
simpler, we defineAl(ω0) = ZTl (ω0)Zl(ω0).

2.2.1. Computingwl(ω0)

The vectorwl(ω0) is given by

wl(ω0) = ZTl (ω0)x = CT
l (ω0)x+ STl (ω0)x (15)

and can be computed efficiently from f in line 1 of Algorithm 1 by
extracting the appropriate elements from the vector f . Specifically
from (5)–(9), the elements ofwl(ω0) can all be computed from

cT (ω0l)x = <
[

exp (−jω0ln0) [f ]l(f−1)+1

]
(16)

sT (ω0l)x = −=
[

exp (−jω0ln0) [f ]l(f−1)+1

]
(17)

where ω0 and the integer f are related through ω0 = 2π(f − 1)/F .
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2.2.2. The structure ofAl(ω0)

The matrix Al(ω0) has a block Toeplitz-plus-Hankel like structure
given by

Al(ω0) =[
T l(ω0) −T̃ l(ω0)

T̃ l(ω0) T l(ω0)

]
+

[
H l(ω0) H̃ l(ω0)

H̃ l(ω0) −H l(ω0)

]
(18)

where T l(ω0) = {t|i−k|(ω0)}li,k=1, H l(ω0) = {hi+k(ω0)}li,k=1,
T̃ l(ω0) = {t̃|i−k|(ω0)}li,k=1, H̃ l(ω0) = {h̃i+k(ω0)}li,k=1 and
the elements of the Toeplitz and Hankel matrices are for i, k ∈
{1, . . . , l} given by

ti−k(ω0) = tk−i(ω0)

=


1
2

cos
(
ω0(i− k)

[
n0 + N−1

2

])
× sin(ω0(i−k)N/2)

sin(ω0(i−k)/2)
i 6= k

N/2 i = k

(19)

hi+k(ω0) =
1

2
cos

(
ω0(i+ k)

[
n0 +

N − 1

2

])
× sin(ω0(i+ k)N/2)

sin(ω0(i+ k)/2)
(20)

t̃i−k(ω0) = − t̃k−i(ω0)

=


1
2

sin
(
ω0(i− k)

[
n0 + N−1

2

])
× sin(ω0(i−k)N/2)

sin(ω0(i−k)/2)
i 6= k

0 i = k

(21)

h̃i+k(ω0) =
1

2
sin

(
ω0(i+ k)

[
n0 +

N − 1

2

])
× sin(ω0(i+ k)N/2)

sin(ω0(i+ k)/2)
. (22)

2.2.3. Selection of the start index n0

The cost function JNLS(ω0, l) can be shown not to depend on the start
index n0. This is a key observation since this allows us to select it
as n0 = −(N − 1)/2 so that t̃i−k(ω0) = h̃i+k(ω0) = 0 for i, k ∈
{1, . . . , l} and any ω0 ∈ R (see (21) and (22)). This means that
we can write the problem in line 7 of Algorithm 1 as two separate
Toeplitz-plus-Hankel systems as

(T l(ω0) +H l(ω0))al(ω0) = w̄l(ω0) (23)
(T l(ω0)−H l(ω0))bl(ω0) = −w̃l(ω0) (24)

wherewl(ω0) =
[
w̄T
l (ω0) w̃T

l (ω0)
]T is partitioned as in (18).

2.2.4. Solving the two linear systems for a given model order

The two linear systems in (23) and (24) can be solved using a
Toeplitz-plus-Hankel solver such as those suggested in [22, 23].
The complexity of fast Toeplitz-plus-Hankel solvers is O(l2) for a
model order of l. Problems involving a Toeplitz-plus-Hankel struc-
ture can be interpreted as a special case of matrix problems with
displacement structures (see, e.g., the overview work [24]).

2.2.5. Solving the two linear systems for all model orders

The two linear systems in (23) and (24) do not only have a Toeplitz-
plus-Hankel structure, but any upper-left subsystem corresponds to
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Fig. 2. The estimation accuracy as a function of frequency for N =
200, l = 10, and an SNR of 15 dB.

a linear system of a lower order. That is, if we solve the two linear
systems for the maximum model order L using a recursive solver
as the one in [22], we get the solutions to all the systems of size
l = 1, . . . , L− 1 for free in the process. The complexity of solving
the two systems (23) and (24) for a model order of l+1 is, therefore,
only O(l) if we already have the solution to the two systems for l.

Based on these key observations, the time complexity of solving
the problem in line 7 of Algorithm 1 can be reduced from O(l3)
to just O(l) which is the same order of complexity as that of HS.
However, note that no approximations are involved in solving the
problem. In addition to the observations above, we also note the
following about the algorithm.

• To further speed up the algorithm, it can be vectorised over
the frequencies, and this is also done in our MATLAB imple-
mentation.

• When the fundamental frequency is very low, the columns
of Zl(ω0) are nearly linearly dependent [12]. The matrix
Al(ω0) is therefore ill-conditioned and may give numerical
problems. However,Al(ω0) can easily be regularised by con-
sidering Al(ω0) + εI2l instead where ε is a small positive
constant. Since εI2l is Toeplitz and diagonal, the regulari-
sation can easily be included in the fast algorithm by adding
ε to t0(ω0). Note also that the regularised algorithm can be
viewed as an intermediate solution between the NLS method
(ε = 0) and the harmonic summation method (ε =∞).

3. SIMULATIONS

In this section, two things are demonstrated. First, we demonstrate
what Fig. 1 suggests; that the ML estimator has a superior estima-
tion accuracy compared to HS for low fundamental frequencies. For
comparison, we also include the YIN method [25] which is the most
popular and most cited autocorrelation-based estimator. Second, and
most importantly, we show that the proposed fast algorithm reduces
the computational cost significantly of computing the NLS cost func-
tion on a uniform F -point grid for all model orders up to L.

Fig. 2 and Fig. 3 show the estimation accuracy of the ML es-
timator, HS, and YIN as a function of the frequency for an SNR
of 15 dB and 0 dB, respectively. The estimation accuracy was as-
sessed via a Monte Carlo simulation consisting of 10,000 runs for
each fundamental frequency point. The data were generated from
the model in (2), and the grid-based fundamental frequency estimate
was refined using a line search [26, Ch. 4]. In the simulations, the
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Fig. 4. The computation time for three different ways of computing
either the exact or the approximate NLS cost function for N = 200
and F = 5NL.

fundamental frequency was kept low relative to N and this also ex-
plains why the unit on the x-axis is cycles/segment (of data). Sev-
eral interesting things can be seen from the two figures. First, YIN
does not work for low fundamental frequencies and in noisy environ-
ments, and it has a suboptimal performance for higher frequencies
even when the noise-level is low. On the other hand, HS attains
the Cramér-Rao lower bound (CRLB) and is an efficient estimator
when he fundamental cycle is not lower than 1.75 cycles/segment
in this simulation setup. For low fundamental frequencies, the ML
estimator clearly outperforms HS and YIN. Note that the asymptotic
CRLB is way too optimistic for low fundamental frequencies (see
also [12]). The accuracy of the ML estimator has been plotted for
three different values of the regularisation parameter. There is not
any major performance difference, but we have noted that the NLS
cost function contains spurious peaks at low frequencies, caused by
numerical problems, when no regularisation is used.

Fig. 4 and Fig. 5 show the computation times of computing
the cost functions on a uniform F -point grid for all model orders
up to L as a function of the number of data points N and the
maximum model order L, respectively. In addition to the com-
putation times, the real-time limit is also marked as a dashed
line for a sampling frequency of 8 kHz. The timing benchmarks
were performed on MATLAB implementations of the various al-
gorithms, and these MATLAB implementations as well as the rest
of the simulation code is available from http://kom.aau.dk/
~jkn/publications/publications.php. The timings
were obtained by executing the algorithms 10i times using the
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Fig. 5. The computation time for three different ways of computing
either the exact or the approximate NLS cost function for L = 30
and F = 5NL.

smallest i ∈ {0, 1, 2, · · · } such that the execution time τ0 ≥ 0.2 s.
For this i, three repetitions of 10i executions were then run and
timed, producing the three repetition times τ1, τ2 and τ3. The re-
ported execution times in Fig. 4 and Fig. 5 were then calculated
as τ = min(τ1, τ2, τ3)/10i. This procedure is the same as the
default settings in Pythons timeit module [27]. All timings were
executed on an Intel(R) Dual Core(TM) i5-2410M CPU at 2.3 GHz
with Ubuntu Linux kernel 3.13.0-24-generic and MATLAB 8.4.0.
Note that we did not include YIN in these benchmarks since we
cannot separate YIN in the same grid and refinement step as the
NLS and HS methods can. Moreover, YIN’s time complexity is
also data dependent since all peaks of the cost function must be
interpolated [25].

In Fig. 4, the timings for N = 200 data points and a variable
model order are shown. The proposed fast algorithm was approxi-
mately 55–70 times faster compared to the standard algorithm in Al-
gorithm 1. On the other hand, the fast algorithm was approximately
7–9 times slower than HS in this implementation. Even though HS
and the proposed fast algorithm have the same order of complex-
ity, this was expected since the constant for the latter algorithm is
higher. In Fig. 5, the timings was reported for a fixed L = 30 and
a variable number of data points. We observe a similar behaviour to
that in Fig. 4. However, the relative speed up of the proposed fast
algorithm to the standard algorithm increaced as a function of N to
approximately 150 at N = 1000.

4. CONCLUSION

In this paper, we proposed a fast algorihm for a maximum likelihood-
based (ML) fundamental frequency estimator for real-valued data.
The algorithm was derived by selecting the start index n0 in a way
so that a block Toeplitz-plus-Hankel system could be written as
two separate Toeplitz-plus-Hankel systems. A recursive and fast
Toeplitz-plus-Hankel algorithm was then used to compute the non-
linear least squares cost function on a uniform F -point grid for
all model orders up to L. This reduced the computational com-
plexity from O(F logF ) + O(FL3) (see Algorithm 1) to just
O(F logF ) + O(FL) where the latter complexity is the same as
the popular harmonic summation (HS) method. Via simulations,
we first demonstrated that the ML estimator outperformed HS and
the autocorrelation-based YIN method for both a low fundamental
frequency and in noisy conditions. We also found that the pro-
posed algorithm reduced the computation time of approximately
two orders of magnitude for standard sized problems.
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