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ABSTRACT

Dynamic time warping (DTW) has proven to be an extremely ef-
fective method for both aligning and matching recordings of music
to corresponding MIDI transcriptions. However, its performance is
heavily affected by factors such as the representation used for the au-
dio and MIDI data and its adjustable parameters. We therefore inves-
tigate automatically optimizing the design of DTW-based alignment
and matching systems. Our approach uses Bayesian optimization
to tune system design and parameters over a synthetically-created
dataset of audio and MIDI pairs. We then perform an exhaustive
search over DTW score normalization techniques to find the optimal
method for reporting a reliable alignment confidence score, as re-
quired in matching tasks. This results in a DTW-based system which
is conceptually simple and highly accurate at both alignment and
matching. We verified that this system achieves high performance in
a large-scale qualitative evaluation of real-world alignments.

Index Terms— Dynamic Time Warping, Audio to MIDI Align-
ment, Sequence Retrieval, Bayesian Optimization, Hyperparameter
Optimization

1. INTRODUCTION

Widely-available MIDI versions of popular music tracks can pro-
vide a bounty of ground-truth data for content-based music infor-
mation retrieval tasks, including beat/bar tracking, onset detection,
key estimation, automatic transcription, and score-informed source
separation (see e.g. [1, 2, 3, 4]). However, to maximize its value, a
given MIDI file must be aligned in time to a corresponding music
audio file. This alignment problem is closely related to MIDI-to-
audio matching, which seeks to identify which audio file (if any)
corresponds to a given MIDI in independent MIDI and audio file
collections. This problem is motivated by the dearth of metadata in-
formation typically available in MIDI files, making any kind of text-
based matching infeasible [5]. In both scenarios, it is of great value
to produce an alignment confidence score which communicates how
well the content in a MIDI file matches a given audio file, which can
reflect the transcription quality.

Most previous research has focused on systems meant for either
alignment or matching but not both. In the context of MIDI-to-audio
alignment, a wide variety of techniques have been proposed to deter-
mine a correspondence between discrete times in the audio and MIDI
files. While some approaches use edit distance measures such as
Smith-Waterman [1] and Needleman-Wunsch [6], the most common
approach is dynamic time warping (DTW) [7]. First proposed for
comparing speech utterances [8], DTW uses dynamic programming
to find a monotonic alignment such that the sum of a distance-like
cost between aligned feature vectors is minimized. This property
makes it well-suited for audio-to-MIDI alignment when we expect

that the MIDI is an accurate continuous transcription (i.e. without
out-of-sequence or incorrect sections).

Since the total distance between aligned pairs of feature vectors
gives a single global value, one nice outcome of DTW is a natural
measure of the “similarity” between two sequences. In fact, DTW
has seen extensive use as a way of measuring sequence similarity in
the data mining literature [9]. In the context of MIDI and audio files,
[10] evaluated DTW’s effectiveness at matching a small collection
of Beatles MIDIs to recordings of Beatles songs.

Despite its widespread use, DTW’s success is dependent on its
parametrization as well as system design choices such as the feature
representation and the local distance metric used. To our knowledge,
there has been no large-scale quantitative comparison of different
DTW-based alignment systems. This is likely due to the fact that
evaluating a given system’s performance would require either a large
collection of MIDI and audio pairs for which the correct alignment is
already known (which does not exist) or manual audition and rating
of the output of the systems (which is time-consuming).

The present work aims to remedy this by searching across a
large space of DTW designs to optimize both alignment accuracy
and confidence reporting. After giving an overview of typical DTW-
based alignment systems (Section 2), we propose a method for cre-
ating a synthetic dataset of MIDI-audio pairs by applying realistic
corruptions to MIDI files, allowing us to know a priori the correct
alignment (Section 3). We then tune parameters for alignment us-
ing Bayesian optimization (Section 4) and for confidence reporting
using an exhaustive search (Section 5). Finally, we perform a large-
scale qualitative evaluation of our proposed alignment system on
real-world data and discuss possibilities for improvement (Section
6).

2. DTW-BASED ALIGNMENT

Suppose we are given two sequences of feature vectorsX ∈ RM×D
and Y ∈ RN×D , where D is the feature dimensionality and M and
N are the number of feature vectors in X and Y respectively. Dy-
namic time warping produces two nondecreasing sequences p, q ∈
NL which define the optimal alignment between X and Y , such that
p[i] = n, q[i] = m implies that the mth feature vector in X should
be aligned to the nth in Y . In DTW, finding p and q involves solving
the following minimization problem:

p, q = arg min
p,q

L∑
i=1

‖X[p[i]]− Y [q[i]]‖22 + Φ(i)

where Φ(i) is φ ≥ 0 when p[i] = p[i − 1] or q[i] = q[i − 1]
and 0 otherwise. φ is a constant which is used to discourage “non-
diagonal moves”, i.e. indices in the path where a feature vector in
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one sequence is mapped to multiple vectors in the other. This min-
imization problem can be solved in O(MN) time using dynamic
programming [8]. Once p and q are found, the original MIDI file
can be adjusted so that events which occur at tX [p[i]] are moved to
tY [q[i]], where tX ∈ RM , tY ∈ RN are the times corresponding to
the feature vectors in X and Y respectively.

DTW is often constrained so that p and q span the entirety of
X and Y , i.e. p[1] = q[1] = 1 and p[L] = N ; q[L] = M . How-
ever, audio-to-MIDI alignment systems typically allow subsequence
matching (to handle, for example, the case of a MIDI file that covers
only a portion of a song), where instead we only require that either
gN ≤ p[L] ≤ N or gM ≤ q[L] ≤ M . g ∈ [0, 1] (the “gully”)
is a parameter which determines the proportion of the subsequence
which must be successfully matched. In addition, the path is occa-
sionally further constrained so that

q[i]− p[i] +R ≤ N, p[i]− q[i] +R ≤M

for i ∈ {1, . . . , L} where R = gmin(M,N) is the “radius”, some-
times called the Sakoe-Chiba band [8]. A further constraint on p and
q is monotonicity; audio to MIDI alignment systems typically en-
force this by requiring p[i+ 1] = p[i] + 1 and/or q[i+ 1] = q[i] + 1,
although other “step patterns” have been proposed [7, 8].

Design choices differentiating DTW systems include:
Feature representation (X and Y ): Prior to alignment, audio and

MIDI data must be converted to an intermediate representation
where their distance can be computed. This is often done by syn-
thesizing the MIDI file to obtain an audio signal and computing a
common spectral transform of the audio recording and synthesized
MIDI audio. Chroma vectors, which represent the amount of en-
ergy in each semitone summed across octaves [11] are a common
choice [10, 1]. A constant-Q transform (CQT), which represents
the amount of energy in logarithmically spaced bins [12] has also
been used [5, 13, 14]. Occasionally, log-magnitude features are
used in order to more closely mimic human perception [5, 14, 2].
In [2] and [10] it is noted that Mel-Frequency Cepstral Coefficients
result in poor performance for music signals because they obscure
pitch information.

Time scale (tX and tY ): Feature vectors are frequently computed
over short, overlapping frames of audio [13, 2, 10]. Note that the
spacing between feature vectors must be sufficiently small com-
pared to the auditory temporal resolution, e.g. tens of millisec-
onds [15]. Occasionally, beat-synchronous feature vectors are used
[5, 14], which can reduce computation time and can produce accu-
rate alignments provided that the beat tracking is correct.

Normalization: In [16], it is argued that z-scoring (standardizing)
the feature sequences is critical for data mining applications of
DTW, which was used in audio-to-MIDI alignment in [10]. In ad-
dition, various normalizations have been applied to the feature vec-
tors inX and Y before computing their local distances. A common
choice is normalizing each vector by its L2 norm, which is equiva-
lent to using the cosine distance [2, 1, 5, 14].

Penalty (φ): In many applications of DTW to audio-to-MIDI align-
ment, no additive penalty is used, which corresponds to setting
φ = 0. However, as long as the MIDI and audio files have con-
sistent tempi, non-diagonal moves should be discouraged. In ad-
dition, it has been argued [5] that when subsequence alignment is
allowed, an additive penalty can be crucial to ensure that the entire
subsequence is used, and so φ is set to the 90th percentile of the dis-
tances ‖X[n] − Y [m]‖22 for m ∈ {1, . . . ,M};n ∈ {1, . . . , N}.
In [14], a fixed value of φ = .5 is used.

Gully (g) and band path constraint: The “gully” and band path
constraint are also often omitted, which corresponds to setting

g = 1. A value of g which is close to 1 will afford some tolerance
to the possibility that the beginning or end of the MIDI transcrip-
tion is incorrect (e.g. a fade-out or lead-in), so [14] sets g = .7
and [5] sets g = .95. In data mining applications [17] it is argued
that the band radius path constraint both reduces computational
complexity and results in more reliable alignments by avoiding
paths with many non-diagonal moves.

3. CREATING A SYNTHETIC ALIGNMENT DATASET

The list above defines a large space of parameter settings/design
choices for DTW-based audio-to-MIDI alignment systems. Previ-
ous research has typically involved manually tuning alignment pa-
rameters based on a modest-sized test set of MIDI/audio pairs and
informally auditioning the aligned MIDI data. Because this method
only facilitates small-scale comparisons, there is an obvious ques-
tion of what parameter settings would yield the best general-purpose
alignment system. Unfortunately, manual audition of even a tiny
subset of possible parameter settings on a modestly-sized collection
of paired MIDI and audio files is infeasible, let alone a collection
large enough to make substantive judgements about the general per-
formance of a given system. Furthermore, automatic evaluation has
been blocked by the lack of a large ground-truth dataset of “correct”
alignments. We therefore propose a method for synthetically creat-
ing MIDI/audio pairs with known alignments by applying a series of
corruptions to MIDI files to resemble real-world conditions. When
applying the corruptions, we keep track of the adjustments needed to
correctly align the corrupted MIDIs, which allows us to rapidly and
automatically evaluate a huge number of possible systems.

To create this dataset, we first collected 1,000 MIDI files which
were transcriptions of Western popular music songs. We then ap-
plied the following series of transformations, based on our experi-
ence with common differences between MIDI transcriptions and au-
dio recordings: First, to simulate differences in tempo, we adjusted
the timing in each MIDI file by a low-frequency length-N random
signal r, defined as

s[k] ∼ N (0, σt), k ∈ {0, . . . , N}

R[k] =

{
s[k]e−k, k ∈ {0, . . . , N}
R[2N − k], k ∈ {N + 1, . . . , 2N − 1}

r[n] =

2N−1∑
k=0

R[k]ejπkn/N , n ∈ {0, N − 1}

i.e. the inverse discrete Fourier transform of an exponentially decay-
ing Gaussian-distributed random spectrum with standard deviation
σr . Second, the first 10% and last 10% of the transcription were
each cropped out with probability 50%, which simulates the MIDI
file being an incomplete transcription. In addition, 1% of each tran-
scription was cut out at a random location with 10% probability,
which simulates a missing measure. Third, because it is common
for a MIDI transcription to be missing an instrument (for example,
karaoke versions of songs, in which the lead vocal line has been
deleted, are frequently distributed as MIDI files), we removed each
instrument track in each MIDI file with probability pr , making sure
never to remove all instruments. Fourth, in all MIDI files, we ran-
domly added 1 or -1 to the program number of each instrument. This
simulated the fact that when comparing a synthesized MIDI file to an
audio recording, the timbre of a synthesized MIDI instrument is al-
ways somewhat different from its real-world counterpart. Finally, for
each note in each instrument, we multiplied the velocity by a random
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number sampled fromN (1, σv) while keeping it in the MIDI veloc-
ity range [1, 127]. This was meant to further simulate differences in
instrument characteristics in real-world vs. synthesized songs, and
also simulated missing notes for large σv . All MIDI data manipula-
tions were realized with pretty_midi [4].

As described in Section 1, a DTW-based alignment system can
serve two purposes: First, to align a MIDI transcription in time to
an audio recording, and second, to produce a confidence score de-
noting the quality of the transcription or whether the MIDI file is
a transcription of the recording at all. We therefore produced two
sets of corrupted versions of the 1,000 MIDI files we collected, one
to measure alignment performance, and one to evaluate confidence
reporting. For the first (“easy”) set, we focused on corruption pa-
rameters corresponding to real-world conditions for a high-quality
transcription, setting σt = 5, pr = .1, σv = .2. For the second
(“hard”), we set σt = 20, pr = .5, σv = 1 so that the alignment
task is sufficiently difficult to result in a significant number of incor-
rect alignments, which allows us to test whether an alignment system
can automatically report failure.

4. OPTIMIZING DTW-BASED ALIGNMENT

Given a dataset of MIDI/audio pairs with known correct alignments,
we can evaluate a given alignment scheme via the mean absolute
alignment error across the set. The mean error quantifies the extent
to which the alignment was able to remove the timing distortions
(random warping and cropping) described in Section 3. When the
alignment has failed for a portion of the song, the error between
the mapped times and the correct times may be very large, so we
clip the mean error to .5 seconds (which essentially denotes an error
threshold above which all local alignment discrepancies are equally
incorrect). Thus, our error metric is:

1

L

L∑
i=1

min(|tX [p[i]]− t̂X [q[i]]|, 0.5)

where t̂X is the ground-truth “warped” time scale. We average this
measure across the test set.

Rapid calculation of this precise metric (over the “easy” test set)
allows us to perform large-scale comparisons of different parameter
settings. To decide which settings to try, we use Bayesian optimiza-
tion, which approximates the relationship between parameter set-
tings and objective values as a Gaussian process. Using this formu-
lation, Bayesian optimization can automatically propose new align-
ment systems based on the performance of previously-evaluated sys-
tems. A more thorough discussion can be found in [18], which is the
framework used in this experiment.

Based on the design choices outlined in Section 2, we chose to
optimize over the following parameter space:
Feature representation: We used either chroma vectors or constant-

Q spectra. The constant-Q spectra spanned 4 octaves, starting from
MIDI note C3 (65.4 Hz) with 12 bins per octave. In preliminary
experiments, we found that all of the best-performing alignment
systems used log-magnitude features regardless of whether chroma
vectors or constant-Q spectra were used, so we computed log-
magnitude features in all experiments.

Time scale: We either computed feature vectors every 46 millisec-
onds or utilized beat-synchronous features.

Normalization: We optionally z-scored the feature vectors, and
normalized them by their L1, L2, L∞ (max) norm, or not at all.

Penalty: For the penalty, we optimized a scale in [0, 3] to apply
to the median distance between all pairs of feature vectors in X
and Y . Using the median distance made this penalty adaptive to
different feature representations and normalization schemes.

Gully and band path constraint: We allowed the gully to take any
value in [0, 1] and optionally enforced the band path constraint.

This space subsumes most of the systems discussed in Section 2. All
feature extraction was realized with librosa [19, 20].

When performing Bayesian optimization, it is helpful to “seed”
the optimization with objective values for many randomly-chosen
parameter settings to ensure that the optimization thoroughly ex-
plores the possible parameter space. We computed the accuracy for
10,000 randomly configured alignment systems and seeded the op-
timizer with the 100 systems which achieved the lowest mean error.
In order to avoid local minima in the parameter space, we carried out
10 differently initialized Bayesian optimization runs with 100 trials
each, resulting in 1,000 total trials.

The best-performing alignment system achieved an objective
value of 0.0181, meaning that the average absolute error across the
entire dataset was about 18 milliseconds. This is both close to the
limit of the auditory temporal resolution and less than half of the
time-scale resolution used for non-beat-synchronous feature vectors,
so attaining a higher accuracy is likely unrealistic. A one-sample
t-test was performed to determine which systems gave alignment
quality statistically equivalent to the best performance. Testing the
per-pair scores rather than the mean error across all pairs gave better
robustness to outliers. Using a p-value of 0.05 as the threshold
returned 51 configurations of indistinguishable quality.

As a high-level overview of these systems, none used beat-
synchronization or a path constraint and all of them used log-
magnitude constant-Q spectra as a feature representation and set
both the penalty median scale and “gully” close to 1. Almost all of
these systems used L2 normalization (resulting in a cosine distance
for local feature comparisons); a few used L1 normalization. There
was no clear trend in the use of z-scoring.

5. OPTIMIZING CONFIDENCE REPORTING

Having found alignment systems which achieve high accuracy on
the “easy” dataset, we move on to the question of computing reli-
able alignment confidence scores. As described in Section 2, DTW
provides a “raw” distance as the sum of distances between all aligned
feature vectors, such that a small distance denotes high confidence.
This measure is inappropriate, however, when the number of aligned
feature vectors varies from song to song; in this setting, the mean
distance is usually used instead of the total distance. Furthermore,
it’s not clear if the non-diagonal path penalties φ should be included
in this distance. Finally, [5] advocates further normalizing this dis-
tance by

1

L2

max(p)∑
i=min(p)

max(q)∑
j=min(q)

‖X[i]− Y [j]‖22

i.e. the mean distance between all pairs of frames over the entire
aligned portion of both feature sequences.

To choose an optimal confidence measure, we first aligned all of
the MIDI/audio pairs in both the “hard” and “easy” datasets. Then,
for every alignment system generated during our Bayesian optimiza-
tion trials, we computed the confidence score for every MIDI/audio
pair using all combinations of the normalization schemes listed
above (with and without length normalization, diagonal penalties,
and mean distance normalization) resulting in 8 possible confidence
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scores per file pair. Finally, we computed the Kendall rank corre-
lation coefficient [21] between each confidence score and the mean
absolute error produced by all alignment systems for every pair in
both datasets. A high correlation indicates that the system is able to
accurately report the quality of its alignments.

Among our 51 highest-accuracy systems, the highest correlation
was 0.710. In general, the high-accuracy systems all produced rank
correlations close to this value. All of the systems achieved the high-
est correlation when including the penalties in the score calculation,
normalizing by the path length, and normalizing by the mean dis-
tance across the aligned portions. This suggests that these steps are
helpful for producing a reliable confidence score.

As a final step in producing a “gold standard” alignment sys-
tem, we decided to find parameter settings that were easy to report
and implement but nevertheless produced alignments and confidence
scores which were not significantly different than the best systems.
We chose the following design: For a feature representation, we
used log-magnitude constant-Q transforms computed on the non-
beat-synchronous time scale described in Section 4. We normalized
the spectra by their L2 norm and did not z-score them. We chose
a penalty φ as the median distance of all pairs of frames and used
a gully parameter g of 0.96. This system achieved a mean absolute
alignment error on the “easy” dataset of 0.0188, with alignment er-
rors which were not significantly different from the best-performing
system. By normalizing the DTW distance (including penalties)
by the path length and the mean distance across aligned portions,
we achieved a rank correlation between confidence and accuracy of
0.700. This “gold standard” system is straightforward to implement,
and will be used for the remainder of this work.

6. QUALITATIVE EVALUATION ON REAL-WORLD DATA

In the experiments described above, we have found a system which
can provide both high accuracy and a useful confidence measure on
synthetic data. To determine its applicability outside of synthetic
contexts, we performed a large-scale qualitative evaluation on real-
world data. The dataset used was a randomly chosen set of 500
MIDI/audio pairs from the 25,000-pair “clean MIDI dataset” [5],
obtained by matching MIDI files with reliable metadata to entries in
the Million Song Dataset [22] via a fuzzy text match. This collec-
tion comprises MIDI files with a full range of transcription qualities,
and includes some pairs which are incorrectly matched due to fail-
ure of the text matching procedure. By manually evaluating whether
each resulting alignment was successful, we can determine how ac-
curately the “gold standard” system performs alignments and how
reliable the reported confidence scores are.

After aligning all pairs in this dataset, we synthesized the re-
sulting aligned MIDI files and created stereo recordings with the
aligned synthesized MIDI audio in one channel and the original au-
dio recording in the other. We then listened to each aligned MIDI
pair and annotated a score from 1-5 as follows:

1. MIDI and audio file are incorrectly matched
2. Alignment failed due to major differences
3. Alignment was mostly successful with minor issues
4. Perfect alignment with minor transcription issues
5. Perfect alignment and transcription

For example, if a MIDI transcription was matched and successfully
aligned to the correct song but was missing an instrument, a rating
of 4 would be given; if the missing instrument caused the alignment
to sound “sloppy”, the rating would be 3 instead. Ideally, align-
ments with low confidence scores (normalized DTW distance) will

Fig. 1. Violin plot (box plot with rotated kernel density estimates)
showing the distribution of confidence scores for each rating in our
qualitative evaluation. A smaller confidence score indicates a more
successful alignment. The area of each violin corresponds to the
number of pairs which had a given rating. Box plots in each violin
show the median and upper and lower quartiles.

be given higher ratings, and vice versa. To prevent biasing the re-
sults, we did not have access to the reported confidence score while
rating a given aligned pair.

Figure 1 shows the distributions of confidence scores for pairs
assigned each of the five ratings. Apart from encountering some in-
correct pairs (rated 1), we also found that various transcription issues
prevented successful alignments. A common issue for those pairs
rated 2 was that the wrong section of the MIDI transcription was
matched to the audio, often due to different instrumentation, keys,
or versions (e.g. the audio was a remix). Any pairs rated 3 either
had multiple missing instruments, many musical embellishments, or
mismatched tempi. In addition, the overlap between the confidence
scores for pairs rated 4 and 5 indicates that our confidence score is
largely invariant to minor transcription issues. The most common
transcription issue for pairs rated 4 was a single missing instrument
or minor embellishments, most often on the vocal track.

Overall, our “gold standard” alignment system was able to
successfully align most correctly-matched pairs and produced a re-
liable confidence score. Considering pairs rated 3-5 as “correct”
matches, the resulting confidence scores achieve an area under the
ROC curve of 0.981 (95% confidence interval [.973, .989], calcu-
lated by 1000-sample bootstrap), indicating a high quality measure.
Unfortunately, there were a few pairs rated 1 or 2 that still had small
normalized DTW scores suggesting a successful alignment; without
these outliers, we could use a wider range of thresholds to obtain
high-confidence alignments. The most important remaining flaw is
the relative insensitivity to missing instruments and embellishments.

In summary, large-scale optimization over synthetic data has
delivered a DTW-based system which is simple to implement and
achieves accurate and reliable results for both alignment and match-
ing. A high-level discussion of this paper, with more figures and an
implementation of our “gold standard” system, is available online,1

as is the code used in these experiments.2 We thank Hilary Mogul
for preliminary work and Dawen Liang for helpful discussion.

1http://bit.ly/alignment-overview
2https://github.com/craffel/alignment-search
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