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ABSTRACT
Mostmusical phenomena involve repetitive structures that enable lis-
teners to track meter, i.e. the tactus or beat, the longer over-arching
measure or bar, and possibly other related layers. Meters with long
measure duration, sometimes lasting more than a minute, occur in
many music cultures, e.g. from India, Turkey, and Korea. However,
current meter tracking algorithms, which were devised for cycles of
a few seconds length, cannot process such structures accurately. We
present a novel generalization to an existing Bayesian model for me-
ter tracking that overcomes this limitation. The proposed model is
evaluated on a set of Indian Hindustani music recordings, and we
document significant performance increase over the previous mod-
els. The presented model opens the way for computational analysis
of performances with long metrical cycles, and has important appli-
cations in music studies as well as in commercial applications that
involve such musics.

Index Terms— Rhythm analysis, Bayesianmodels, Meter track-
ing, Particle filters, Hindustani music

1. INTRODUCTION

An important rhythm analysis task in Music Information Research
(MIR) is to identify and align the underlying meter within an au-
dio music recording. For instance, beat tracking aims to align audio
with the metrical level called the tactus, referred to as the metrical
level at which a listener taps her foot [1, p.21] (see [2] for a list of
beat tracking algorithms). Tracking the meter at the higher level of
bar/measure is often referred to as downbeat tracking in MIR. We
explore the combined task of beat and downbeat tracking, which we
refer to as meter tracking since it aims to align several levels of a
known meter to an audio recording of a music performance.

Several approaches have discussed meter tracking in the past [3,
4] and recent approaches in meter tracking have successfully applied
Bayesian models [5,6]. Based on the model presented in [6], the task
of meter tracking was combined with the determination of the type
of meter in [7]. Other strategies involve the usage of deep learning,
e.g. in [8], where a set of deep belief networks are trained on various
features for the task of downbeat detection.

All methods presented so far in the context of meter tracking, to
the best of our knowledge, have been evaluated on metrical cycles
of short durations. In specific, the typical duration of a 4/4 measure
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in popular Eurogenetic music would last from a bit less than 2s to
little more than 4s. Longer metrical cycles were reported to cause
problems in existing approaches [7]. Interestingly, this upper dura-
tion coincides with the limit of a perceptual phenomenon referred to
as perceptual present [9], and it has been argued that longer metrical
cycles might not be perceived as a single rhythmic entity [10]. In
tracking such long metrical cycles, listeners often track shorter, but
musically meaningful sections of the cycle.

A similar idea was applied by Böck et al. [11], where rhythmic
patterns of beat length are learned in order to perform beat tracking.
However, the authors assume beats to form an isochronous sequence
- an assumption that does not hold for manymusics of the world, such
as Indian, Turkish, Balkan, or Korean musics. Furthermore, they do
not attempt to infer higher metrical levels, i.e. downbeat positions.
In this paper, we address for the first time two basic limitations of the
existingmeter tracking approaches, which are the restrictions to short
cycles and isochronous (equally spaced in time) beat sequences. We
propose a generalization of our previous models that uses musically
meaningful and possibly unequal section length rhythmic patterns in
the task of meter tracking, and apply it to Hindustani music. With
the new model, we evaluate if using shorter section length rhythmic
patterns can improve meter tracking compared to bar (cycle) length
rhythmic patterns, in the presence of long metrical cycles.

Hindustani music (HM) is an art music tradition from the Indian
subcontinent, which continues to play an important role in the local
sociocultural context with significant musicological literature and a
large audience. The rhythmic framework in HM is based on cyclic
rhythmic modes of certain length called the tāl. A cycle of a tāl is di-
vided into isochronous basic time units called mātrā. The mātrās of
a tāl are grouped into sections, sometimes with unequal time-spans,
called vibhāgs. The beginning of a cycle (the downbeat) is referred to
as sam [10]. Figure 1 shows a tāl that is 7 mātrā long, rūpak tāl, with
three vibhāgs of unequal lengths. The vibhāgs are numbered, with
the sam shown with numeral 1. Percussion accompaniment is pro-
vided by the tabla, which acts as the timekeeper of the tāl and plays
pre-defined rhythmic patterns (called the ṭhēkā) for each tāl (for more
details see [10,12–14], and acoustic examples are provided at http:
//compmusic.upf.edu/examples-taal-hindustani).

Hindustani music divides tempo into three main tempo classes
(lay). Since no exact tempo ranges are defined for these classes, we
determined suitable values, measured in mātrās per minute (MPM),
in correspondence with a professional Hindustani musician as 10-
60 MPM, 60-150 MPM, and >150 MPM for the slow (vilaṁbit),
medium (madhya), and fast (dr̥t) tempi, respectively. In our exper-
iments, we will examine how the tempo class affects the tracking
accuracy, and we will compare with an informed case, in which the
tempo class is known.
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Fig. 1: Rūpak tāl (7 mātrās) Fig. 2: Section Pointer Model

With a wide range of tempo, cycles as long as a minute, and non-
isochronous subdivisions of the cycle, Hindustani music is a suitable
case for extending the horizon of the state of the art in meter track-
ing [15]. There has been some previous work in rhythmic analysis of
Hindustani music in meter estimation [16] and tāl recognition [12],
but to the best of our knowledge, this is the first work to propose
meter tracking for Hindustani music. However, since the proposed
model is a generalization of a state of the art model, it can be applied
to arbitrary music styles in a straight forward way. Free access for
research purposes to all code repositories and datasets is provided on
the companion webpage1. We begin by describing the model and the
inference scheme that we use for meter tracking.

2. MODEL STRUCTURE AND TRAINING

Given an audio recording of a music piece along with the informa-
tion about its rhythmic mode (tāl), we aim to time align the mātrā and
the sam with the recording i.e. the goal is to track a known metrical
structure. We propose a Dynamic Bayesian Network (DBN) called
the Section Pointer Model (SPM) that is based on the bar pointer
model (BPM), which was initially proposed in [17], and then ap-
plied in [5–7, 18]. The model is shown in Figure 2, where circles
and squares denote continuous and discrete variables, respectively.
Gray nodes and white nodes represent observed and latent variables,
respectively.

In a DBN, an observed sequence of features derived from an au-
dio signal y1:K = [y1, . . . , yK ] is generated by a sequence of latent
variables x1:K =[x1, . . . , xK ], whereK is the length of the sequence
(number of frames in an audio excerpt). The joint probability distri-
bution of latent and observed variables factorizes as,

P (y1:K , x0:K) = P (x0) ·
K∏

k=1

P (xk|xk−1)P (yk|xk) (1)

where, P (x0) is the initial state distribution, P (xk|xk−1) is the tran-
sition model, and P (yk|xk) is the observation model.

2.1. Latent variables

At each audio frame k, the latent variables describe the state of a hy-
pothetical pointer xk = [ϕk ϕ̇k vk], representing the position in the
section, instantaneous tempo, and a section indicator, respectively.
• Section indicator: The section indicator variable v ∈ {1, . . . , V }
is an indicator variable that identifies the section (vibhāg) of a tāl,
and selects one of the V observation models corresponding to each
section length rhythmic pattern learned from data. A tāl might
have many sections of different lengths. We denote the number of
mātrās in a section v by Bv .
1http://compmusic.upf.edu/icassp-2016-spm

• Position in section: The position within a section is tracked by
ϕ ∈ [0,Mv), with ϕ increasing from 0 to Mv and then resetting
to 0 to start the next section, where Mv is the length of section v.
We set the length of the longest section as M , and then scale the
lengths of other sections accordingly.

• Instantaneous tempo: Instantaneous tempo ϕ̇ (measured in posi-
tions per time frame) is the rate at which the position variable ϕ
progresses through a section at each time frame. The allowed range
of the variable ϕ̇k ∈ [ϕ̇min, ϕ̇max] depends on the frame hop size
(∆ = 0.02s used in this paper), and can be preset or learned from
data. In a given section v, a value of ϕ̇k corresponds to a section
duration of (∆ ·Mv/ϕ̇k) seconds and (60 · Bv·ϕ̇k/(Mv·∆)) mātrās
per minute (MPM).

2.2. Transition and Observation model

In this paper, we assume uniform priors, P (x0), on all variables,
within the allowed ranges of tempo. Due to the conditional depen-
dence relations shown in Figure 2, the transition model factorizes as,

P (xk|xk−1) = P (ϕ̇k|ϕ̇k−1, vk−1)P (vk|vk−1, ϕk, ϕk−1)

P (ϕk|ϕk−1, ϕ̇k−1, vk−1) (2)

Each term in Eq. (2) is further defined in Eq. (3)–(5).

P (ϕk|ϕk−1, ϕ̇k−1, vk−1) = 1ϕ (3)

where 1ϕ is an indicator function that takes a value of one if ϕk =

(ϕk−1 + ϕ̇k−1)mod(Mvk−1) and zero otherwise, meaning that the
position advances at the rate of the instantaneous tempo variable, and
is reset when it crosses the maximum value Mvk−1 of the section
being tracked.

P (ϕ̇k|ϕ̇k−1, vk−1) ∝ N (ϕ̇k−1, σ
2
ϕ̇)× 1ϕ̇ (4)

where 1ϕ̇ is an indicator function that equals one if ϕ̇k ∈ [ϕ̇min, ϕ̇max]
and zero otherwise, restricting the tempo to be between a predefined
range. N (µ, σ2) denotes a normal distribution withmeanµ and vari-
ance σ2. The value of σϕ̇ depends on the value of tempo and the
length of the section. We set σϕ̇ = σn · ϕ̇k−1 · (Mvk−1/M), where
σn is a user parameter that controls the amount of local tempo vari-
ations we allow in the music piece.

P (vk|vk−1, ϕk, ϕk−1) =

{
A(vk−1, vk) if ϕk < ϕk−1

1v else
(5)

whereA(vi, vj) is the time-homogeneous transition probability from
vi to vj , and 1v is an indicator function that equals one when vk =
vk−1 and zero otherwise. Section changes are permitted only at the
end of the section, and the matrix A is used to determine the order
of the sections as defined in the tāl by allowing only those defined
transitions.

The observation model incorporates the same two dimensional
spectral flux feature used in [6], and depends on the position (ϕ)
and the section indicator (v) variables. Using mātrā and sam an-
notated training data, section length feature sequences are obtained
from each tāl. We then discretize a section into cells that are 1/8th of
a mātrā in length, collect all the features within the cell and compute
the maximum likelihood estimates of the parameters of a two compo-
nent Gaussian Mixture Model (GMM). The discretization and tying
of several position states to the same observation model is based on
the fact that the features do not change abruptly within the fraction
of a mātrā. The observation probability hence is computed as,
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Tāl Structure Dataset
#Mātrās #Vibhāgs Vibhāg structure HMDl HMDs HMDf #Annotated mātrās #Annotated sam

tīntāl 16 4 4,4,4,4 13 41 54 17142 1081
ēktāl 12 6 2,2,2,2,2,2 32 26 58 12999 1087
jhaptāl 10 4 2,3,2,3 6 13 19 3029 302
rūpak tāl 7 3 3,2,2 8 12 20 2841 406
Total - - - 59 92 151 36011 2876

Table 1: The Hindustani music collection showing the number of excerpts in each subset - HMDl , HMDs and HMDf . The number of sam
and mātrā annotations in HMDf are also shown. For each tāl, the table also shows the structure of the tāl with the number of mātrās and
vibhāgs (sections) in each cycle. The fourth column shows the grouping of the mātrās in a cycle into vibhāgs, and the length of each vibhāg,
e.g. each cycle of rūpak tāl shown in Figure 1 has three sections consisting of three, two, and two mātrās, respectively.

P (y|x) = P (y|ϕ, v) =
2∑

i=1

cϕ,v,i N (y;µϕ,v,i,Σϕ,v,i) (6)

where, N (y;µ,Σ) denotes a normal distribution, and for each
mixture component i, cϕ,v,i,µϕ,v,i and Σϕ,v,i are the component
weight, mean (2-dimensional) and the covariance matrix (2 × 2),
respectively. Hence, there is an observation GMM for every section
and tied position states.

The described section pointer model is a generalization of the
previously presented bar pointer model [17] - when a tāl is assumed
to have only one section spanning the whole cycle (V = 1), we
obtain the tracking model presented in [5–7]. Further, by changing
the structure of the transition matrix A to include many tāl section
transitions, the model can also be used for determining the type of
meter as in [7], but this is beyond the scope of this paper.

3. INFERENCE

The goal of inference is to find a maximum a posteriori (MAP)
sequence of latent variables (x∗1:K ) that maximizes the posterior
P (x1:K |y1:K), which can then be straightforwardly translated into
a sequence of downbeat (sam) instants (ϕ∗

k = 0, v∗k = 1), sec-
tion boundaries (ϕ∗

k = 0, v∗k ̸= v∗k−1), mātrā instants (ϕ∗
k =

(i− 1) ·Mv/Bv , i = 1, . . . , Bv), and the time varying instantaneous
tempo (ϕ̇∗

k).
For inference on the proposed model, we use an approximate in-

ference scheme called the Auxiliary Mixture Particle Filter (AMPF),
which has been shown to be effective for meter tracking [6]. We
briefly outline the AMPF, emphasizing on relevant aspects. A de-
tailed description of the algorithm has been presented in [6] and an
introduction to particle filtering can be obtained from [19]. It has
been shown that this approximate inference scheme performs com-
parable to the exact inference using a hidden Markov model, while
being computationally less demanding [6, 18].

In particle filters, the posterior density P (x1:K |y1:K) is approx-
imated using a weighted set of points (called particles) in the state
space as,

P (x1:K |y1:K) ≈
Np∑
i=1

w
(i)
K δ(x1:K − x(i)1:K) (7)

Here, {x(i)1:K} is a set ofNp number of points (particles) with associ-
ated weights {w(i)

K }, i = 1, . . . , Np, and x1:K is the set of all state
trajectories until frameK, while δ(x) is the Dirac delta function.

Particle filters approximate the posterior pointwise, for which
we need a suitable method to draw samples x(i)k and compute appro-
priate weights w(i)

k recursively at each time step. Using Sequential
Importance Sampling (SIS) [19] and the transition probability as the
proposal distribution as in [6], the particle weights can be recursively

computed as,
w

(i)
k ∝ w

(i)
k−1P (yk|x(i)k ) (8)

The SIS algorithm derives samples by first sampling from a proposal,
in this case the transition probability and then computes weights ac-
cording to Eq. (8) using the observation model in Eq. (6). Once we
determine the particle trajectories {x(i)1:K}, we then select the trajec-
tory x(i

∗)
1:K with the highest weight w(i∗)

K as the MAP state sequence.
The SIS algorithm has several limitations that need improve-

ments to be practically useful. The degeneracy problem of the SIS
causes only few particles to have non-zero weights after a few steps,
a problem that can be overcome by resampling [19] - we use system-
atic resampling in this paper. In our problem, the posterior is highly
multimodal due to multiple possible tempo hypotheses at each time,
and we hence applied two additional extensions as in [6]. The first,
the Auxiliary Particle Filter (APF) [20] manipulates weights during
the resampling step, and the second, called theMixture Particle Filter
(MPF) [21], groups the particles into clusters. Each of these clusters
can then, in principle, track a distinct mode in the posterior. The
combination of APF and MPF called the AMPF, as proposed in [6],
is what we apply here for inference as well.

4. DATASET

For the purpose of this study, we compiled a dataset ( HMDf ) that
consists of 151 two minute long excerpts of Hindustani music sam-
pled from the CompMusic Hindustani music research corpus [22], a
curated collection of commercial audio releases and metadata. The
excerpts have a tabla accompaniment and span four popular tāls of
Hindustani music. The dataset is described in Table 1 and consists of
both vocal and instrumental recordings spanning different lay, artists,
and stylistic schools. The audio is stereo and sampled at 44100 Hz.
To the best of our knowledge, this is the first sizeable mātrā and
sam annotated collection of Hindustani music, and all annotations
are publicly available for download from the companion webpage.

For each audio excerpt, the annotations consist of editorial meta-
data about the tāl, as well as time-aligned metrical annotations of
all mātrā and sam instances. The mātrā annotations are accompa-
nied with the mātrā number in the cycle so that the vibhāg (section)
boundaries can be easily obtained. The annotations were manually
done using Sonic Visualizer [23] by tapping to the excerpt and then
correcting them. All annotations were then verified by a professional
Hindustani musician.

The dataset contains excerpts with a large tempo range of over
five octaves from 10 MPM to 370 MPM, with cycle length vary-
ing between 2.3 s and 69.6 s. To study the effect of tempo class on
the performance of meter tracking, we form two subsets of the full
HMDf dataset: all the vilaṁbit (slow) lay excerpts into a long cy-
cle subset (HMDl), and all the madhya (medium) and dr̥t (fast) lay
excerpts into a short cycle subset (HMDs).
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Tempo class Subset Method Sam tracking Mātrā tracking
tīntāl ēktāl jhaptāl rūpak tāl Mean tīntāl ēktāl jhaptāl rūpak tāl Mean

Informed
HMDl

bar 0.464 0.078 0.178 0.630 0.234 0.705 0.186 0.656 0.703 0.406
section 0.696 0.161 0.256 0.681 0.359 0.793 0.268 0.736 0.799 0.503

HMDs
bar 0.768 0.935 0.874 0.671 0.817 0.916 0.966 0.921 0.806 0.916

section 0.806 0.930 0.949 0.716 0.850 0.917 0.968 0.948 0.829 0.924

Not informed
HMDl

bar 0.128 0.032 0.663 0.536 0.186 0.370 0.107 0.743 0.690 0.309
section 0.098 0.034 0.691 0.463 0.173 0.340 0.118 0.821 0.695 0.317

HMDs
bar 0.725 0.868 0.932 0.665 0.787 0.905 0.936 0.938 0.798 0.905

section 0.776 0.884 0.941 0.706 0.820 0.916 0.945 0.956 0.835 0.919

Table 2: F-measure values of meter tracking for all combinations of experimental setups, column-1: either using tempo class information in
training or not, column-2: the subset (long, or short cycle pieces) used for testing, and column-3: either tracking the whole cycle as a unit (bar)
- BPM, or in sections as proposed (section) - SPM. The column titled “Mean” shows the average performance over all the pieces of the subset.
For each subset, the value underlined denotes a statistically significant improvement over the value of the other method (in a paired-sample
t-test at 5% significance levels).

5. EXPERIMENTS

The experiments aim to compare the performance of meter tracking
using bar length (BPM) and the proposed section length (SPM) pat-
terns. The BPM applies the position variable ϕ to the whole tāl cycle,
while the proposed SPM applies ϕ to the sections (vibhāg) and im-
poses a sequential structure as described in Section 2. Performance is
monitored for short cycles ( HMDs ) and long cycles ( HMDl ) sep-
arately. Tracking is done for each type of meter (tāl) separately in
a two fold cross validation experiment. We will further examine
two cases, the tempo-informed case, in which only samples from the
same lay group (subset) are used for training, and the uninformed
case, in which samples from all lay groups are used for training.

5.1. Parameter learning and evaluation measures
The tempo ranges [ϕ̇min, ϕ̇max] are learned from the training data of
each fold, with an additional 20% margin for unseen data. For the
SPM, the length of longest section, M = 1600, is set for the four
mātrā long sections in tīntāl and other section lengths are scaled ac-
cordingly. The number of particles is set equal to Np = 1500 · V .
For the BPM hence, since V = 1, M = 1600 corresponds to the
whole of the longest cycle(tīntāl) and Np = 1500. For the AMPF,
we set σn = 0.02 and the maximum number clusters to 200. The
other AMPF parameters are identical to the values used in [6].

A variety of measures are available for evaluating beat and
downbeat tracking performance (see [24] for an overview). We
chose the F-measure metric that is widely used in beat tracking
evaluation. The F-measure (Fmeas) is a number between 0 and 1
computed from correctly detected beats, within a window of ±70
ms, as the harmonic mean of the precision (the ratio between the
number of correctly detected beats and all detected beats) and re-
call (the ratio between the number of correctly detected beats and
the total annotated beats). This beat tracking definition extends to
tracking the mātrās (m-Fmeas) and the downbeats/sams (s-Fmeas)
as well, with the same tolerances. We tested with other beat evalua-
tion measures applied in MIR, but they did not provide qualitatively
different results. For evaluation in this paper, we used the code
available at http://code.soundsoftware.ac.uk/projects/
beat-evaluation/ with default settings.

5.2. Results and Discussion
Table 2 depicts the obtained meter tracking results. Each number is
themean performance over three inference runs with the AMPF algo-
rithm. Both the BPM and SPM have good tracking performance for

shorter cycles ( HMDs ) in the tempo class informed case, with high
Fmeas for both sam andmātrā tracking. The proposed SPM performs
significantly better than the BPM for most tāls in the HMDs case.

On the longer cycles ( HMDl ), the performance is generally
lower, confirming that tracking longer cycles is more challenging
than shorter cycles. The SPM provides a significant improvement
over BPM in the tempo-informed case, an improvement that vanishes
in the non-informed case. Furthermore, the results on HMDl vary
considerably across the tāls. For instance, the mean s-Fmeas in the
informed case with SPM for ēktāl is 0.161 while for both tīntāl and
rūpak tāl a much smaller decrease compared to HMDs can be ob-
served (e.g. 0.806 to 0.696 for tīntāl). This large disparity is caused,
on the one hand, by the sections in ēktāl being all of identical length
(two mātrā), which causes higher similarity between sections, and,
on the other hand, the extremely low tempo of the vilaṁbit ēktāl
pieces; the median tempo of vilaṁbit ēktāl pieces in 13.51 MPM,
which means that the fastest defined pulsation at the mātrā level of
the tāl occurs about every four seconds.

For the tempo uninformed case, the vilaṁbit (slow) pieces have
an average s-Fmeas of 0.173 with the SPM, while on the faster non-
vilaṁbit pieces 0.820 is reached. This can be compared to the s-
Fmeas with SPM in the informed case of 0.359 and 0.850, for long
and short cycles, respectively. Therefore, for the short cycles almost
no advantage is obtained when providing tempo class information,
while for long cycles tempo class information leads to a significant
improvement (both for BPM and SPM). This also clearly shows the
bias of the models towards higher tempi when the complete range of
tempi is allowed. Since tempo class is provided as editorial metadata,
it can be used to improve meter tracking performance.

6. CONCLUSIONS

We presented a generalized Bayesian model for meter tracking that
enables an improved tracking in cycles of long durations. It was
further shown that even in the case of shorter cycles, the results
improved over a previously presented tracking model. We demon-
strated that providing the information of the tempo class can improve
the tracking accuracy especially for cycles of long duration. While
the depicted accuracies for long cycles are still quite low, we pre-
sume that large improvement can be obtained by replacing the purely
onset based observation model by a richer signal representation. Fur-
thermore, in recordings that have two pieces in different tāls and lay,
an automatic segmentation might be necessary before tracking. Such
segmentation could be performed using, e.g. Bayesian change point
detection [25], a problem that needs further exploration.
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