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ABSTRACT

Multichannel non-negative matrix factorization based on a spatial
covariance model is one of the most promising techniques for blind
source separation. However, this approach is not tractable for a large
number of microphones, M , because the computational cost is of
order O(M3) per time-frequency bin. To circumvent this drawback,
we propose non-negative tensor factorization in the wavenumber do-
main, which reduces the cost to the order O(M). It transforms
microphone signals into the spatial frequency domain, a technique
that is commonly used for soundfield reconstruction. The proposed
method is compared to several blind source separation (BSS) meth-
ods in terms of separation quality and computational cost.

Index Terms— Multichannel BSS, Non-negative Tensor Fac-
torization, Wavenumber Domain, DoA, Spatial Covariance Model

1. INTRODUCTION

Non-negative matrix factorization (NMF) is one of the most preva-
lent techniques for blind source separation, and a number of studies
have been carried out on single-channel [1–3] and multichannel sce-
narios [4–9]. In 2010, Ozerov and Févotte proposed a multichannel
extension of NMF based on a spatial covariance model (SC-NMF),
which incorporates spatial covariance matrices (SCMs) that encode
the spatial positions of source signals [4]. Although the technique
performs well under any type of mixing conditions, the convergence
of the cost function is unstable and much slower than that of conven-
tional NMF techniques. Sawada et al. mitigated this problem by in-
troducing multiplicative update rules instead of using an expectation-
maximization algorithm [7]. When the microphone positions are
known, this technique was proved to improve separation quality be-
cause the direction of the source can be estimated from the interchan-
nel coherence. Nikunen and Virtanen devised a direction-of-arrival
(DoA)-based spatial covariance model, which provides a number of
DoA kernels, namely, the outer products of steering vectors [8]. The
weights of the DoA kernels are obtained by multiplicative update
rules. It should be noted that the studies reported so far assume at
most 3 or 4 microphones and are not suitable for a large number of
microphones because the computational cost for SC-NMF is of order
O(M3) per time-frequency (TF) bin.

Non-negative tensor factorization (NTF) is another promising
technique for a multichannel scenario. The cost is only of order
O(M) [10, 11] per TF bin. The drawback is that, in contrast to SC-
NMF, it cannot model interchannel phase differences; that is, only
intensity level differences between microphones are taken into ac-
count as spatial properties of the observed mixture. However, thanks
to its low computational cost, NTF is being rigorously investigated
for many types of applications [12, 13], and a number of variants
have been proposed [14–17].

In the field of soundfield reconstruction, in which a large num-
ber of microphones and loudspeakers are used, signal representation

in the spatial frequency domain is regarded as an essential technique
for reducing computational cost [18,19]. This transformation allows
essential information to be compressed and computational complex-
ity to be reduced from order O(M3) to O(M). The idea of using a
spatial transform can also be applied to SC-NMF. To our knowledge,
NMF-based source separation that explicitly takes advantage of spa-
tial frequency representation has not yet been deeply investigated.
Koyama et al. proposed a MAP estimation method to derive both
spatial basis components and their weights, given the position of the
primary source, so that spherical waves could be modeled with less
spatial aliasing [20]. However, unlike NMF, the method does not
take into account the source properties.

The focus of this work is twofold:

1. BSS in the wavenumber domain, in which plane waves can
be represented as sparse spectrograms.

2. Efficient BSS for next-generation telecommunication sys-
tems, in which a large number of microphones in a uniform
linear array are generally employed.

For example, Fig. 1 shows plane waves in the wavenumber domain,
originating from three different directions. It is clear that the plane
waves can be represented with little overlapping of the spectrograms,
which is a great advantage for NMF-based BSS. Furthermore, we
can derive an approximated modeling for SCM in the wavenumber
domain, showing that SCM can be diagonalized and its inverse is
efficiently calculated. This leads to faster implementation of NMF-
based multichannel blind source separation with a large number of
microphones, compared to the conventional SC-NMF. Also, we can
confirm that the proposed method outperforms NTF in separation
quality.

This paper is organized as follows: Section 2 briefly explains
SCM and DoA-based SC-NMF. Section 3 describes our new method,
which is based on an approximation of SCMs. Section 4 shows eval-
uation results on quality and computational cost. Finally, Section 5
presents some concluding remarks.

2. SPATIAL COVARIANCE MODEL

A spatial covariance model assumes that the TF bins of multichannel
spectrograms for each source are represented by a complex Gaussian
distribution:

sifn ∼ NC

(
0,Ri

fn

)
, (1)

where i, f , and n are the indices of sources, frequency bins, and
frames, respectively; sifn ∈ CM is an M -dimensional vector rep-
resenting the ith source captured by M microphones; and Ri

fn ∈
CM×M is an SCM. The superposition of multiple sources is repre-
sented by a sum of complex Gaussians:
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Fig. 1. Virtual plane waves represented in the wavenumber domain,
originating from π/20, 8π/20, and 14π/20.

xfn =
∑
i

sifn ∼ NC

(
0,
∑
i

Ri
fn

)
, (2)

with

Rfn =
∑
i

Ri
fn = E

[
xfnx

H
fn

]
, (3)

where xfn ∈ CM denotes a complex-valued short-time Fourier
transform (STFT) of superposed sources captured by M micro-
phones. The Hermitian transpose is denoted by H . To model the
SCMs of a mixture, the element-wise divergence between estimated
SCMs,

C(θ) =
∑
fn

DIS

(
Rfn|R̂fn

)
=

∑
fn

tr
(
RfnR̂

−1
fn

)
− log detRfnR̂

−1
fn −M, (4)

is minimized, where θ is a set of hidden variables, R̂fn is an es-
timated SCM, and tr() is the trace function of linear algebra. The
Itakura-Saito (IS) divergence,DIS, is often preferred for minimizing
SCMs owing to its scale-invariant nature [6, 7].

2.1. DoA-based SC-NMF

To take advantage of prior knowledge of microphone settings,
Nikunen and Virtanen proposed in [8] a DoA-kernel-based approach
to the estimation of SCMs:

R̂fn =
∑
k

∑
o

Jfozkowfkhkn, (5)

where Jfo is a DoA kernel; zko is the weight of a kernel; wfk is the
frequency basis; hkn is the activation; and o and k are indices for
steering directions and NMF components, respectively.

A DoA kernel, Jfo, is calculated from the outer product of steer-
ing vectors:

Jfo = hfoh
H
fo, (6)

with

hfo =

 1
...

ejωf (M−1)γo

 , (7)

where ωf is the narrowband frequency and γo is the time difference
of arrival (TDoA) between two adjacent microphones. This holds
only for a uniform linear array with omnidirectional microphones.

3. PROPOSED METHOD

3.1. Minimization of IS divergence

Multiplicative update rules based on cost function (4) together with
a model (5) can be derived by an auxiliary function method:

zko ← zko

√√√√√∑fn tr
(
R̂−1
fnRfnR̂

−1
fnJfo

)
wfkhkn∑

fn tr
(
R̂−1
fnJfo

)
wfkhkn

, (8)

wfk ← wfk

√√√√√∑on tr
(
R̂−1
fnRfnR̂

−1
fnJfo

)
zkohkn∑

on tr
(
R̂−1
fnJfo

)
zkohkn

, (9)

hkn ← hkn

√√√√√∑fo tr
(
R̂−1
fnRfnR̂

−1
fnJfo

)
zkowfk∑

fo tr
(
R̂−1
fnJfo

)
zkowfk

. (10)

These formulations are simpler variants of an algorithm proposed
by Higuchi and Kameoka [21]. As can be seen from the update
rules, the matrix inversions of the estimated SCMs, which are of
order O(M3), make the algorithm intractable for a large number of
microphones (e.g., 32).

3.2. Approximation of SCM in spatial frequency domain

To tackle this problem, the SCM approach can be extended to a
tensor-based approach by converting the signals on M channels into
spatial frequency spectrograms. This transformation can be written
and statistically modeled as

FHxfn = FH
∑
i

sifn ∼ NC

(
0,FHRfnF

)
, (11)

where F ∈ CM×M denotes a unitary transform matrix, such as a
DFT matrix. The cost function for signals in the spatial frequency
domain can be modified to

Csp(θ) =
∑
fn

DIS

(
FHRfnF|FHR̂fnF

)
. (12)

If we assume that F is a diagonalizing transform of Rfn and
R̂fn, that is, if we assume that FHRfnF and FHR̂fnF are diag-
onal matrices or transformed covariance matrices (see Fig. 2), then
FHRfnF and FHR̂fnF can be well approximated by considering
only their diagonal elements:

FHRfnF ≈


a1fn 0 . . . 0
0 a2fn . . . 0
...

...
. . .

...
0 0 . . . amfn

 , (13)
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Fig. 2. SCM of mixed plane waves (1 kHz) originating from π/20,
8π/20, and 14π/20. The number of microphones, M , is 32. The
function | | denotes the element-wise absolute of the matrix.

FHR̂fnF ≈
∑
k

∑
o


b1fo 0 . . . 0
0 b2fo . . . 0
...

...
. . .

...
0 0 . . . bmfo

 zkowfkhkn.

(14)
Thus, the cost function can also be approximated by considering

only the diagonal elements:

Csp(θ) ≈
∑
mfn

DIS (amfn|âmfn)

=
∑
mfn

DIS

(
amfn|

∑
k

∑
o

bmfozkowfkhkn

)
,

(15)

under the assumption that FHR̂fnF = diag(â1fn, ..., âMfn).
These formulations are analogous to the cost function for NTF.

3.3. Derivation of update rules

The auxiliary function can be constructed by applying Jensen’s In-
equality to the convex part of the cost function and the Taylor expan-
sion to the concave part:

C+
sp(θ, rmfnko, umfn) =

∑
mfn

(∑
ko

r2mfnko
amfn

bmfozkowfkhkn

+ log umfn +
âmfn − umfn

umfn

)
,

(16)

where rmfnko and umfn are hidden variables that satisfy∑
ko rmfnko = 1, rmfnko ≥ 0 and umfn ≥ 0. The partial deriva-

tives with respect to zko, wfk, and hkn are derived by minimizing
the auxiliary function

∂C+
sp

∂zko
=
∑
mfn

(
−r2mfnko

amfn
bmfoz2kowfkhkn

+
bmfowfkhkn

umfn

)
,

(17)

Table 1. Experimental setup
Number of sources 3

Number of channels M = 32
Sampling rate 16 kHz

STFT frame size 1024
STFT frame shift 512

Number of iterations 100

∂C+
sp

∂wfk
=
∑
mno

(
−r2mfnko

amfn
bmfozkow2

fkhkn
+
bmfozkohkn

umfn

)
,

(18)

∂C+
sp

∂hkn
=
∑
mfo

(
−r2mfnko

amfn
bmfozkowfkh2

kn

+
bmfozkowfk

umfn

)
.

(19)

The equality of the auxiliary function and the cost function holds
only when the hidden variables satisfy

rmfnko =
bmfozkowfkhkn

âmfn
, (20)

umfn = âmfn. (21)

The update rules reflecting the approximation can be rewritten
so that they no longer contain matrix inversions:

zko ← zko

√√√√∑fn

∑
m

amfn

â2
mfn

bmfowfkhkn∑
fn

∑
m

1
âmfn

bmfowfkhkn
, (22)

wfk ← wfk

√√√√∑on

∑
m

amfn

â2
mfn

bmfozkohkn∑
on

∑
m

1
âmfn

bmfozkohkn
, (23)

hkn ← hkn

√√√√∑fo

∑
m

amfn

â2
mfn

bmfozkowfk∑
fo

∑
m

1
âmfn

bmfozkowfk
. (24)

A comparison with the update rules in the previous section
shows that the matrix inversions have been replaced with divisions,
allowing the algorithm to run at a computational cost of order
O(M). We call the proposed method wavenumberNTF (wnNTF),
since our initial research target was signals in a uniform linear array,
for which a wavenumber representation is practical.

4. EVALUATION

An evaluation was conducted by using the BSS Eval Toolbox,
which calculates the signal-to-distortion ratio (SDR), the signal-to-
interference ratio (SIR), and the signal-to-artifact ratio (SAR) [22].
The proposed wnNTF method was compared with other BSS meth-
ods in two scenarios: anechoic and reverberant. The sound samples
from SiSEC 2008 were used in combination with room impulse
responses (RIRs) associated with source positions [23]. The test
conditions (Table 1) were the same for both experiments.
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Table 2. SDR, SIR, and SAR results

DS with oracle DoAs wnNTF
SDR SIR SAR SDR SIR SAR

Hi-hat -12.77 -9.88 24.30 7.43 -0.49 2.72
Snare -3.36 -9.01 10.54 0.68 -7.04 0.70
Bass 3.28 15.93 19.38 16.56 15.13 19.51

4.1. Anechoic scenario

For the anechoic scenario, wnNTF was compared to independent
vector analysis (IVA) [24] and NTF [11]. Multichannel observations
for a uniform linear array were created simply by summing all the
sources together with the addition of proper delays in the frequency
domain. Separated signals for IVA were reconstructed by applying
the projection back [25]. The distance between microphones was set
to 0.384 m. The number of components for NTF and wnNTF was
18. The angle resolution for DoA kernels was limited to 10◦ in the
range 0-180◦ due to computational cost. It should be noted that the
approximation resulting from the extraction of the diagonal elements
of SCMs is not correct for a uniform linear array because an SCM
cannot be a circulant matrix. However, the approximation error can
be mitigated by increasing the length of the array [26, 27].

The average improvement in SDR per file (Fig. 3) and the aver-
age improvement in SDR per angle between the two nearest sources
(Fig. 4) show that the wnNTF method outperformed the other two
methods for all three files at all source distances. The results for dif-
ferent distances show the same tendency as that in [8], namely, that
the larger the source distance is, the better the DoA-based method
performs with respect to non DoA-based methods. In addition, we
assume that the proposed method has an advantage over NTF due
to the sparse representation of propagated waves in the wavenumber
domain, where the sources are less superposed. Unfortunately, due
to the extreme computational complexity of SC-NMF, the compari-
son for 32 channels could not be completed in a reasonable amount
of time. It took 1024 times longer than it took wnNTF (323/32 =
1024). Moreover, it is less likely that wnNTF will outperform SC-
NMF because wnNTF approximates the SCMs and the DoA kernels
in the wavenumber domain by using only diagonal elements.

4.2. Reverberant scenario

Evaluations for a reverberant scenario were conducted on the pro-
posed method and on a delay-&-sum (DS) beamformer with oracle
DoAs. The azimuths of the three sources were π/20, 8π/20, and
14π/20 radians. An image-source method was used to obtain rever-
berant RIRs [28]. The reverberation time, T60, was 0.5 s for a room
7.68 m× 14 m× 6 m in size. A uniform linear array of microphones
was assumed to be in the center of the room. The distance between
microphones was set to 0.046 m. The other parameters were the
same as those in Table 1.

The SDR and SIR results (Table 2) show that the proposed
method outperformed the DS beamformer in the reverberant sce-
nario, even with oracle DoAs for the beamformer. This is probably
due to the fact that the proposed method is capable of modeling
full-rank SCMs, even though a circulant matrix is approximated by
a large Toeplitz matrix, whereas the DS beamformer can only steer
in a single direction.

Table 3. Computation time for 1 iteration [s]

IVA NTF wnNTF DoA-based
SC-NMF

3.076e-01 1.2351e+00 1.6098e+01 1.0934e+03
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Fig. 3. Average improvement in SDR per source for hi-hat, snare
drums, and bass guitar.
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Fig. 4. Average improvement in SDR per direction, with the x-axis
being the angle between the two nearest sources.

4.3. Computational cost

The computation time required for 1 iteration for each method is
listed in Table 3. The parameter settings for the experiment are
the same as those of section 4.1. The computation time was mea-
sured using MATLAB codes run on a PC with 18 Intel Xeon cores
and 384 GB of memory. Although there is unexpected overhead
in real implementation, wnNTF is still greatly faster than SC-NMF,
confirming the proposed method’s advantage in computational effi-
ciency.

5. CONCLUSION AND FUTURE WORK

This paper describes the use of NTF in the wavenumber domain to
reduce the computational cost of BSS for a large number of chan-
nels. The technique is based on the approximation of SCMs, which
are transformed into the wavenumber domain in advance. With this
approximation, the cost of running the algorithm is of order O(M),
whereas it is of order O(M3) for conventional SC-NMF. An evalu-
ation conducted for anechoic and reverberant scenarios showed that
the proposed method yielded good separation quality. Future plans
call for a comparison with SC-NMF and an evaluation of the use
other orthogonal transforms, for example, spherical harmonics.
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