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ABSTRACT
This paper presents a robust variant of nonnegative matrix factoriza-
tion (NMF) based on complex Student’s t distributions (t-NMF) for
source separation of single-channel audio signals. The Itakura-Saito
divergence NMF (Gaussian NMF) is justified for this purpose under
an assumption that the complex spectra of source signals and those
of the mixture signal are complex Gaussian distributed (the additiv-
ity of power spectra holds). In fact, however, the source spectra are
often heavy-tailed distributed. When the source spectra are complex
Cauchy distributed, for example, the mixture spectra are also com-
plex Cauchy distributed (the additivity of amplitude spectra holds).
Using the complex t distribution that includes the complex Gaussian
and Cauchy distributions as its special cases, we propose t-NMF as
a unified extension of Gaussian NMF and Cauchy NMF. Further-
more, we propose the corresponding variant of positive semidefinite
tensor factorization based on multivariate complex t distributions (t-
PSDTF). The experimental results showed that while t-NMF and t-
PSDTF were comparative to Gaussian counterparts in terms of peak
performance, they worked much better on average because they are
insensitive to initialization and tend to avoid local optima.

Index Terms— Source separation, nonnegative matrix factor-
ization, positive semidefinite tensor factorization, t distribution.

1. INTRODUCTION

One of the most standard approaches to source separation of single-
channel audio signals is to perform nonnegative matrix factorization
(NMF) and Wiener filtering in the frequency domain [1–9]. NMF
approximates a nonnegative matrix (a set of nonnegative vectors) as
the product of two nonnegative matrices (a set of basis vectors and
a set of activation vectors), i.e., each nonnegative vector is approx-
imated by the weighted sum of nonnegative basis vectors. If NMF
is applied to a nonnegative spectrogram (e.g., an amplitude or power
spectrogram) of piano sounds (mixture), for example, the basis vec-
tors are expected to be average energy spectra of different pitches
used in the piece. The mixture spectrogram is then decomposed into
the sum of source spectrograms via time-frame-and-frequency-bin-
wise Wiener filtering (time-frequency bins are processed indepen-
dently) according to the source proportions determined by the basis
and activation vectors. However, it is difficult to resynthesize high-
quality time-domain source signals because the phase information of
source spectrograms should be recovered by post-processing [10].

To circumvent this problem, positive semidefinite tensor factor-
ization (PSDTF) has recently been proposed for audio source sepa-
ration [11, 12]. Given a set of positive semidefinite (PSD) matrices
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Fig. 1. Comparison between PSDTF and NMF.

as input data, each PSD matrix is approximated by the weighted sum
of PSD basis matrices. As shown in Fig. 1, PSDTF is a mathemati-
cally fundamental extension of NMF because positive semidefinite-
ness of matrices is an extended concept of nonnegativity of scalars
and vectors. Each PSD matrix of input data is obtained by calculat-
ing the product of the complex spectrum and its conjugate transpose
in a time frame (window). NMF, on the other hand, focuses on only
the diagonal elements of the PSD matrix, i.e., on nonnegative vec-
tors (power spectra). Since PSDTF can deal with phase information,
the complex spectrograms of source signals are directly obtained via
time-frame-wise Wiener filtering (the frequency bins of each frame
are processed jointly in an interdependent manner).

Among many variants of NMF and PSDTF, Itakura-Saito diver-
gence NMF (IS-NMF or Gaussian NMF) [13] or LogDet divergence
PSDTF (LD-PSDTF or Gaussian PSDTF) [11] is justified for au-
dio source separation under an assumption that the complex spectra
of source signals are univariate or multivariate complex Gaussian
distributed, respectively. The underlying probabilistic models have
complex Gaussian likelihoods for the observed mixture spectra due
to the reproductive property of the Gaussian distribution (the additiv-
ity of power spectra). In fact, however, Gaussian NMF often under-
performs Kullback-Leibler divergence NMF (KL-NMF or Poisson
NMF) [14] that assumes the additivity of amplitude spectra based on
the physically-meaningless Poisson likelihood [15,16].

The univariate complex symmetric α-stable (SαS) distribution
with a characteristic-exponent parameter 0 < α ≤ 2 was recently
found to justify the additivity of fractional power spectra1 [17]. It
has the reproductive property for any α and includes the univariate
complex Gaussian (α = 2) and Cauchy (α = 1) distributions as its
special cases. If the source spectra are complex SαS distributed, the
mixture spectra are also complex SαS distributed. Under this gener-
ative process, generalized Wiener filtering was proposed for decom-
posing the mixture spectra into the sum of source spectra in terms
of posterior inference [17]. Maximum-likelihood estimation of SαS
distributions of source signals, however, has been proposed only for

1Element-wise power-of-α of amplitude spectra, e.g., power spectra (α =
2) and amplitude spectra (α = 1).
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α = 2 (Gaussian NMF [13]) and α = 1 (Cauchy NMF [18]) be-
cause the probability density function (PDF) of the SαS distribution
is analytically expressible only for α = 2 or 1.

In this paper we propose Student’s t PSDTF (t-PSDTF), which
includes Student’s t NMF (t-NMF), Gaussian NMF (Gaussian NMF
[13]), Cauchy NMF [18], Gaussian PSDTF (Gaussian PSDTF [11]),
and Cauchy PSDTF as its special cases. The complex t distribution
has an analytically expressible PDF for any degree-of-freedom pa-
rameter ν and includes the complex Gaussian (ν =∞) and Cauchy
(ν = 1) distributions as its special cases (Fig. 2). Since the t dis-
tribution, like the SαS distribution, has heavy tails, it is considered
to be more suitable for modeling real-world audio signals than the
Gaussian distribution. Although the additivity of fractional power
spectra is not generally justified, i.e., the reproductive property of
the univariate or multivariate complex t distribution holds only for
ν = 1 or ν = ∞, respectively, other values of ν have the potential
of performing best in practice. The main contributions of this paper
are to propose Cauchy PSDTF as an extension of Cauchy NMF [18]
and to formulate a unified probabilistic model that enables us to con-
tinuously adjust the value of ν.

To execute t-PSDTF, we derive a convergence-guaranteed multi-
plicative update algorithm that maximizes the t likelihood for a mix-
ture spectrogram by using an auxiliary function technique [19, 20].
The parameter updating rules of t-PSDTF and t-NMF are found to
converge to those of Gaussian PSDTF [12] and Gaussian NMF [19]
when ν→∞ and to give new updating rules of Cauchy NMF when
ν = 1. The unified view of these updating rules reveals why t-PSDTF
based on the heavy-tailed t distribution is more robust to outliers and
avoids over-fitting to the observed mixture spectrogram.

2. MATHEMATICAL FOUNDATION

This section explains the probabilistic models of Gaussian NMF [13]
and Gaussian PSDTF [11] and introduces the characteristics of the
α-stable and Student’s t distributions.

2.1. Nonnegative matrix factorization

Given a set of nonnegative vectors X = [x1, · · · ,xN ] ∈ R
M×N
+

as input data, NMF approximates each nonnegative vector xn ∈
R

M
+ by the weighted sum of a limited number of nonnegative basis

vectors W = [w1, · · · ,wK ] ∈ R
M×K
+ as follows:

xn ≈
K∑

k=1

hknwk
def
= yn, (1)

where H = [h1, · · · ,hK ] ∈ R
N×K
+ is a set of activation vectors,

K � min(M,N) is the number of basis vectors, and yn ∈ R
M
+

represents a reconstruction vector. Let ykn = hknwk be a source
reconstruction vector such that yn =

∑
k ykn. In IS-NMF [13]

the reconstruction error D(xn|yn) between xn and yn is evaluated
using the Itakura-Saito divergence:

DIS(xn|yn) =

M∑
m=1

(
xnmy

−1
nm − log xnmy

−1
nm − 1

)
(2)

This divergence is never less than zero and is zero only when xn =
yn. To estimate W and H such that the total cost functionD(X|Y )
=
∑

nD(xn|yn) is minimized, a convergence-guaranteed multi-
plicative update (MU) algorithm was derived [19].

2.2. Positive semidefinite tensor factorization

Given a set of complex-valued PSD matrices X = [X1, · · · ,XN ] ∈
C

M×M×N as input data, PSDTF approximates each PSD matrix

Xn�0 ∈ C
M×M by the weighted sum of a limited number of PSD

basis matrices W = [W1, · · · ,WK ] ∈ C
M×M×K as follows:

Xn ≈
K∑

k=1

hknWk
def
= Yn, (3)

where H = [h1, · · · ,hK ] ∈ R
N×K
+ is a set of activation vectors,

K � min(M,N) is the number of basis vectors, and Yn � 0 ∈
C

M×M represents a reconstruction matrix. Let Ykn = hknWk be
a source reconstruction matrix such that Yn =

∑
k Ykn. In LD-

PSDTF [12] the reconstruction error D(Xn|Yn) between Xn and
Yn is evaluated using the LogDet divergence [21]:

DLD(Xn|Yn) = tr
(
XnY

−1
n

)
− log

∣∣XnY
−1
n

∣∣−M. (4)

This divergence is never less than zero and is zero only when Xn =
Yn. To estimate W and H such that the cost function D(X |Y) =∑

nD(Xn|Yn) is minimized, a convergence-guaranteed multiplica-
tive update (MU) algorithm was derived [12].

The similarity between Eq. (1) and Eq. (3) indicates that Gaus-
sian PSDTF reduces to Gaussian NMF when all PSD matrices are
restricted to diagonal matrices (diag(Xn) = xn, diag(Yn) = yn,
diag(Ykn) = ykn, and diag(Wk) = wk). Note that the diagonal
elements of PSD matrices always take nonnegative values.

2.3. Application to audio source separation

To formulate a probabilistic model for audio source separation, it is
necessary to represent the generative process of the complex spec-
trogram of a target mixture signal. Let Sk = [sk1, · · · , skN ] ∈
C

M×N be the complex spectrogram of the k’th source signal, where
M is the number of frequency bins (window size) andN is the num-
ber of frames. Let S = [s1, · · · , sN ] ∈ C

M×N be the complex
spectrogram of the mixture signal such that S =

∑K
k=1 Sk.

In Gaussian PSDTF, skn is assumed to be multivariate complex
Gaussian distributed with a covariance matrix Ykn as follows:

skn ∼ Nc(0,Ykn). (5)

Since S =
∑K

k=1 Sk and Yn =
∑K

k=1 Ykn, the reproductive prop-
erty of the Gaussian distribution leads to

sn ∼ Nc(0,Yn). (6)

More specifically, the log-likelihood function is given by

log p(sn|Yn) = −M log(π)− log |Yn| − sH
n Y −1

n sn

c
= − log |Yn| − tr(XnY

−1
n )

def
= L(Xn|Yn) (7)

where Xn = sns
H
n is an observed PSD matrix obtained by calcu-

lating the product of the complex spectrum and its conjugate trans-
pose. The maximum-likelihood estimates of W and H are obtained
by maximizing the total log-likelihoodL(X |Y) =

∑
n L(Xn|Yn).

To do this, Gaussian PSDTF can be used because maximization of
Eq. (7) is equivalent to minimization of Eq. (4).

Given the mixture spectrogram S, each source spectrogram Sk

can be estimated via Wiener filtering, i.e., calculation of posterior
Gaussians of source spectra based on estimated W and H .

E[skn|sn] = YknY
−1
n sn. (8)

In Gaussian NMF, in contrast, the elements of skn are assumed
to be independently distributed, i.e., sknm ∼ Nc(0, yknm) and snm

∼ Nc(0, ynm). This means that the correlations between frequency
bins are ignored, resulting in inferior quality of source separation.

2.4. Elliptically contoured α-stable distribution

The elliptically contoured (sub-Gaussian) version of the multivariate
(d-variate) complex α-stable distribution, Sc

α(μ,Σ), is specified by
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a location vector μ ∈ C
d and a PSD scale matrix Σ � 0 ∈ C

d×d,
and Sc

α(0,Σ) is called the symmetric α-stable (SαS) distribution
[22]. When α = 2 and α = 1, it reduces to the complex Gaussian
and Cauchy distributions given byNc(μ, 2Σ) and Cc(μ,Σ), where

Nc(x|μ,Σ) =
1

πd|Σ| exp
(
−zHΣ−1z

)
, (9)

Cc(x|μ,Σ) =
2dΓ( 2d+1

2
)

π
2d+1

2 |Σ|

(
1 + 2zHΣ−1z

)− 2d+1
2

. (10)

where z = x − μ. While the PDF of a sub-Gaussian α-stable ran-
dom vector x ∈ C

d cannot be given in closed form, its characteristic
function (CF; Fourier transform of PDF) is analytically given by

ϕ(t) = E

[
eiRe(tHX)

]
= exp

(
−
(
1
2
tHΣt

)α
2 + iRe(tHμ)

)
. (11)

This indicates that while the reproductive property holds for any α
in the univariate case (d = 1), it holds only for α = 2 in the multi-
variate case (d > 1)2, i.e.,{
x1 ∼ Sc(μ1, σ

α
1 )

x2 ∼ Sc(μ2, σ
α
2 )
⇒ x1 + x2 ∼ Sc(μ1 + μ2, σ

α
1 + σα

2 ) , (12){
x1 ∼ Nc(μ1,Σ1)
x2 ∼ Nc(μ2,Σ2)

⇒ x1+x2 ∼ Nc(μ1+μ2,Σ1+Σ2) . (13)

2.5. Student’s t distribution

The multivariate complex student’s t distribution T c
ν (μ,Σ) is spec-

ified by a degree of freedom ν, a location vector μ ∈ C
d, and a PSD

scale matrix Σ � 0 ∈ C
d×d. Its PDF is explicitly given by

T c
ν (x|μ,Σ) =

2dΓ( 2d+ν
2

)

(πν)dΓ( ν
2
)|Σ|

(
1 +

2

ν
zHΣ−1z

)− 2d+ν
2

. (14)

Like the α-stable distribution, it converges to Nc(μ,Σ) as ν → ∞
and reduces to Cc(μ,Σ) when ν = 1. The reproductive property
holds only when ν = 1 and d = 1.

For comparison, Fig. 2 shows the PDFs of univariate real SαS
and Student’s t distributions, Sα(0, σα) and Tν(0, σ2), with differ-
ent values ofα and ν, where S2(0, σ2) = T∞(0, 2σ2) = N (0, 2σ2)
and S1(0, σ) = T1(0, σ2) = C(0, σ). Since both distributions have
heavy tails, in this paper we focus on the t distribution as a substitute
for the α-stable distribution because of its tractability.

3. PROPOSED METHOD

This section proposes a novel variant of PSDTF based on the multi-
variate complex t likelihood (t-PSDTF). It has a degree-of-freedom
parameter ν for decomposing the complex spectrogram of a mixture
signal into the sum of the spectrograms of source signals via general-
ized Wiener filtering [17] as in Gaussian PSDTF [12] (Eq. (8)). If the
time-frequency bins of source spectrograms are independently uni-
variate complex Gaussian or Cauchy distributed (ν = ∞ or 1), the
additivity of power or amplitude spectra is satisfied [23] (Eq. (12)).
This theoretically justifies the generative process of a mixture spec-
trogram behind Gaussian NMF [13] and Cauchy NMF [18]. If each
frame of source spectrograms is multivariate complex Gaussian dis-
tributed (ν = ∞), the additivity of power spectra forms the basis
of Gaussian PSDTF [12] (Eq. (13)). Although the additivity of frac-
tional power spectra does not hold in the other cases, the unified
probabilistic formulation of t-PSDTF enables us to flexibly tune ν
or perform a kind of annealing by gradually increasing ν as an in-
verse temperature to avoid local optima of Gaussian PSDTF.

2The convolution of two PDFs (the PDF of the sum of two random vari-
ables) is equivalent to the product of the corresponding CFs.
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Fig. 2. PDFs of univariate real SαS and Student’s t distributions; the
scale parameters of the SαS distribution are adjusted for comparison,
considering S2(0, 0.5) = T∞(0, 1) and S1(0, 1) = T1(0, 1).

3.1. Maximum-likelihood estimation

Instead of the multivariate complex Gaussian log-likelihood given by
Eqs. (6) and (7), we use the multivariate complex t log-likelihood:

L(Xn|Yn)
c
= − log |Yn| − 2M+ν

2
log
(
1 + 2

ν
tr
(
XnY

−1
n

))
. (15)

where c
= denotes equality up to a constant and skn ∼ T c

ν (0,Ykn)
⇒ sn ∼ T c

ν (0,Yn) does not hold for finite ν (cf. Eqs. (5) and (6)).
To derive convergence-guaranteed updating rules of W and H

that maximize the total log-likelihood L(X |Y) =
∑

n L(Xn|Yn),
we use an auxiliary function technique [19] that maximizes the lower
bound of L(X |Y), F(X |Y). First, for a convex function f(Z) =
− log |Z| (Z � 0 ∈ C

M×M ), we calculate a tangent plane at arbi-
trary Ω � 0 by using a first-order Taylor expansion as follows:

− log |Z| ≥ − log |Ω| − tr(Ω−1Z) +M, (16)

where the equality holds when Ω = Z. Second, for a concave func-
tion g(Z) = −tr(Z−1A) with any PSD matrix A � 0, we use the
following inequality [24]:

−tr
((∑K

k=1 Zk

)−1

A

)
≥ −

K∑
k=1

tr
(
Z−1

k ΛkAΛH
k

)
, (17)

where {Zk � 0}Kk=1 is a set of arbitrary PSD matrices, {Λk}Kk=1 is
a set of auxiliary matrices that sum to the identity matrix (

∑
k Λk =

I), and the equality holds when Λk = Zk(
∑

k′ Zk′)−1.
Using Eqs. (16) and (17), F(X |Y) can be derived as follows:

L(X |Y) ≥
∑

n

(
− log |Ωn| − tr(Ω−1

n Yn) +M

− 2M+ν
2

(
ψn + ψ−1

n

(
1 + 2

ν
tr
(
XnY

−1
n

))
− 1
))

(18)
c

≥
∑

n

(
−tr(Ω−1

n Yn)− 2M+ν
ν

ψ−1
n

∑
ktr
(
h−1
knW

−1
k ΛknXnΛ

H
kn

))
,

where the equality holds (F(X |Y) is maximized) when

Ωn = Yn, ψn = 1 +
2

ν
tr
(
XnY

−1
n

)
, Λkn = YknY

−1
n . (19)

Letting the partial derivatives of F(X |Y) with respect to Wk

and hkn be zero, we get the following updating rules:

Wk ←WkQ
1
2
k (Q

1
2
k WkPkWkQ

1
2
k )

− 1
2Q

1
2
k Wk, (20)

hkn ← hkn

(
tr
(
πnXnY

−1
n WkY

−1
n

)
tr
(
WkY

−1
n

)
) 1

2

, (21)

where Pk =
∑N

n=1 hknY
−1
n , Qk =

∑N
n=1 hknY

−1
n (πnXn)Y

−1
n ,

and πn = 2M+ν

2tr(XnY −1
n )+ν

. If tr(Wk) = s, we disambiguate the

scales of W and H by Wk ← 1
s
Wk and hkn ← shkn.

3.2. Time-domain formulation

t-PSDTF can be defined in the time domain. Let Ŝ = [ŝ1, · · · , ŝN ] ∈
R

M×N be a set of windowed signals of N frames. We assume that
ŝn ∼ Tν(0, Ŷn), where Ŷn ∈ R

M×M is a PSD matrix and Tν is
a multivariate real t distribution. Let F ∈ C

M×M be the DFT ma-
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Fig. 3. Source separation performance.

trix. Given X̂n = ŝnŝ
T
n =FHXnF as observed data, we can esti-

mate Ŵk =FHWkF and ĥkn = hkn by using t-PSDTF such that
X̂n ≈ Ŷn=

∑
k ĥknŴk. The log-likelihood function is given by

L(X̂n|Ŷn)
c
= − log |Ŷn| − M+ν

2
log
(
1 + 1

ν
tr
(
X̂nŶ

−1
n

))
. (22)

The updating rules that iteratively maximizeL(X̂n|Ŷn) are the same
as Eqs. (20) and (21) except that πn = M+ν

tr(XnY −1
n )+ν

. This is not
equivalent to the frequency-domain formulation given in Section 3.1.

3.3. Connection to Gaussian PSDTF and Gaussian NMF

The updating rules of t-PSDTF given by Eqs. (20) and (21) converge
to those of Gaussian PSDTF [12] as ν → ∞, where πnXn plays a
role in controlling the impact of the observed data Xn in each itera-
tion. Since πnXn →Xn as ν →∞, Gaussian PSDTF totally relies
on the observed data Xn. Interestingly, we found that t-PSDTF with
finite ν can be interpreted as Gaussian PSDTF that virtually regards
πnXn as observed data varying over updating iterations, where πn

depends on the current reconstruction Yn.
As shown in Section 2.2, the updating rules of t-NMF are ob-

tained by restricting PSD matrices to diagonal matrices (diag(Xn) =
xn, diag(Yn) = yn, and diag(Wk) = wk) as follows:

wkm ← wkm

(∑
n(πnmxnm)hkn/y

2
nm∑

n hkn/ynm

) 1
2

, (23)

hkn ← hkn

(∑
m(πnmxnm)wkm/y

2
nm∑

m wkm/ynm

) 1
2

, (24)

where πnm = 2+ν
2xnm/ynm+ν

and πnmxnm is given by

πnmxnm =
(

2
2+ν

y−1
nm + ν

2+ν
x−1
nm

)−1

. (25)

Eqs. (23) and (24) converge to the updating rules of Gaussian NMF
[19] as ν → ∞ and give new updating rules of Cauchy NMF as
alternatives to those in [18]. Eq. (25) is the harmonic mean of ob-
servation xnm and reconstruction ynm with a ratio of ν to 2. Unlike
Gaussian NMF, t-NMF makes reconstruction ynm close to virtual
observation πnmxnm depending on ynm, not real obeservation xnm.
This prevents t-NMF from over-fitting to xnm.

4. EVALUATION

This section reports a comparative experiment evaluating the source
separation performance of t-PSDTF and t-NMF.

4.1. Experimental conditions

We used three audio recordings each of which was synthesized using
piano sounds (011PFNOM), electric guitar sounds (131EGLPM), or
clarinet sounds (311CLNOM) from the RWC Music Database: Mu-
sical Instrument Sound [25]. Each recording (16 kHz, mono) of 14 s
was made by concatenating seven single tones and chords of 2 s (C4,
E4, G4, C4+E4, C4+G4, E4+G4, and C4+E4+G4). Each recording
was separated into three source signals of C4, E4, and G4 (K = 3).
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Fig. 4. Time-domain Cauchy PSDTF for a piano mixture signal.

The local signals {ŝn}Nn=1 and complex spectra {sn}Nn=1 were ex-
tracted using a Gaussian window with a width of 512 samples (M =
512) and a shifting interval of 160 samples (N = 1400).

We tested Poisson NMF [14], t-NMF with ν = 0.5, 1 (Cauchy
NMF [18]), 2, 5, 10, 20, ∞ (Gaussian NMF [13]), and t-PSDTF
with ν = 1 (Cauchy PSDTF), ∞ (Gaussian PSDTF [12]). Each
variant of NMF was executed 100 times with random initialization
and t-PSDTF was initialized by using the average results of Cauchy
NMF for fast convergence. The separation quality was evaluated
in terms of source-to-distortion ratio (SDR), source-to-interferences
ratio (SIR), and sources-to-artifacts ratio (SAR) [26].

4.2. Experimental results

The experimental results showed the clear superiority of t-NMF with
ν = 1, 2 for source separation (Fig. 3). Although the peak perfor-
mance of t-NMF with any ν was comparable to Gaussian NMF [13],
t-NMF with small ν was robust to initialization and stably attained
good performance. In addition, t-PSDTF significantly outperformed
t-NMF. If t-PSDTF was initialized appropriately, almost the same
performance was achieved regardless of ν. Interestingly, t-NMF
with ν = 2 slightly worked better than Cauchy NMF [18] assuming
the additivity of amplitude spectra in a theoretically-founded way.
This indicates the practical effectiveness of our unified formulation
with a tunable parameter ν. To reduce the prohibitive computational
cost of PSDTF, O(KNM3), we plan to use low-rank approxima-
tion of basis matrices. Maximum-likelihood estimation of ν would
be feasible by starting with ν = 1 and gradually increasing ν.

5. CONCLUSION

This paper presents t-PSDTF, a robust version of positive semidefi-
nite tensor factorization for single-channel audio source separation.
Based on the multivariate complex t likelihood, it includes t-NMF,
Gaussian NMF (IS-NMF [13]), Cauchy NMF [18], Gaussian PSDTF
(LD-PSDTF [11]), and Cauchy PSDTF (newly proposed) as its spe-
cial cases. We found that while the peak performances of t-NMF and
t-PSDTF were on a par with those of Gaussian NMF and PSDTF, t-
NMF and t-PSDTF were less likely to get stuck in bad local optima.

We will try to find multiplicative updating rules of PSDTF based
on the multivariate complex symmetric α-stable likelihood (SαS-
PSDTF). Its NMF counterpart called SαS-NMF [27] is theoretically
an ideal approach to source separation because the additivity of frac-
tional power spectra holds true for any α [17]. Although W ,H, α
can be optimized or marginalized out in a Bayesian manner, only a
MCMC-based method can be used at the momemt.
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