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ABSTRACT

We address the problem of “cocktail-party” source separation in a
deep learning framework called deep clustering. Previous deep net-
work approaches to separation have shown promising performance
in scenarios with a fixed number of sources, each belonging to a dis-
tinct signal class, such as speech and noise. However, for arbitrary
source classes and number, “class-based” methods are not suitable.
Instead, we train a deep network to assign contrastive embedding
vectors to each time-frequency region of the spectrogram in order to
implicitly predict the segmentation labels of the target spectrogram
from the input mixtures. This yields a deep network-based analogue
to spectral clustering, in that the embeddings form a low-rank pair-
wise affinity matrix that approximates the ideal affinity matrix, while
enabling much faster performance. At test time, the clustering step
“decodes” the segmentation implicit in the embeddings by optimiz-
ing K-means with respect to the unknown assignments. Prelimi-
nary experiments on single-channel mixtures from multiple speak-
ers show that a speaker-independent model trained on two-speaker
mixtures can improve signal quality for mixtures of held-out speak-
ers by an average of 6dB. More dramatically, the same model does
surprisingly well with three-speaker mixtures.

Index Terms— speech separation, embedding, deep learning,
clustering

1. INTRODUCTION

In real world perception, we often must selectively attend to ob-
jects whose features are intermingled in the incoming sensory signal.
Nowhere is this more apparent than in hearing, where signals are
densely mixed and can be challenging to separate. Nevertheless hu-
man listeners easily perceive separate sources in an acoustic mixture,
and this ability has inspired a variety of computational approaches to
the so-called auditory scene analysis or cocktail party problem [1].
We address the problem of “cocktail-party” speech separation in a
deep learning framework we call deep clustering.

Single-channel speech separation is the task of estimating the
individual speech signals that are mixed together and overlapping in
a monaural signal. It is a challenging problem and many further as-
sumptions have been used to make headway. Previous attempts have
generally assumed that the number of sources is fixed. Some “speech
separation” methods are about separating speech from challenging
background noise [2–4] instead of separating multiple speakers.
Many previous approaches have relied on speaker-dependent mod-
els [5–7], although some also addressed the case of same-speaker
mixtures [5, 7], or more than two speakers [8]. Furthermore, many
of these addressed only tasks with limited vocabulary and grammar,
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as in [9]. Some were able to achieve impressive performance in
these limited domains.

In this work, we consider a more open and difficult task of
speaker-independent separation of two or more speakers, with no
special constraint on vocabulary and grammar. Speaker-independent
separation was addressed in [10] by building speaker adaptation
upon the model-based approach of [5]. In another direction, [8] ex-
tended [5] to handle more than two speakers. While both extensions
are interesting, in general speed and learning are problematic.

Meanwhile, the state-of the art in enhancement and separation
is currently done using deep networks [11–13]. These class-based
methods train on parallel sets of mixtures and their constituent tar-
get sources, so that the network predicts the source belonging to the
target class, or classifies the type of source that dominates each time-
frequency bin.

Although class-based methods can succeed in the speaker-
dependent case, where each target is a speaker known at training
time, they fail to learn in the speaker-independent case, as shown
in our experiments. Neural networks have an output dimension for
each target source class, and when targets are multiple sources of
the same type, they encounter a permutation problem: the system
needs to make an arbitrary decision about which output dimension
to use for each source. For neural networks, which deterministically
map a given input to a given source estimate in each dimension, it is
difficult to learn if the the permutation of training targets into slots
is arbitrary and indeterminate.

An important family of methods based on clustering may be
more flexible in this regard. These include computational audi-
tory scene analysis (CASA) approaches that use perceptual grouping
cues [14, 15], and spectral clustering approaches [16] that use affin-
ity kernels. CASA approaches seek to explain perceptual grouping
of regions in terms of their similarity [17]. Such methods are heuris-
tic, and although carefully tuned systems perform surprisingly well
on speech [18], they still fall behind the class-based deep learning
methods, as we show below. With no training, over-fitting is not a
problem, but it is difficult to imagine accommodating different types
of sources.

In the area of spectral clustering, however, which is based on
eigen-decomposition of the normalized affinity matrix [19], signifi-
cant progress has been made in learning the relative weights of dif-
ferent affinity features [16]. Unfortunately, the spectral clustering
paradigm suffers from high computational cost, and shallow learn-
ing. These factors appear to be co-dependent: simple kernels tend to
produce sparse affinity matrices, which require costly spectral meth-
ods to reduce to clusters. Conversely this very complexity makes
optimization of the front end processing a formidable challenge [16].

In the speech separation problem, powerful front-end processing
is indeed required, because of a pesky chicken and egg problem. To
infer the segmentation requires features of neighboring regions of
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the same source, but the context regions for one source also contain
intermingled parts of other sources. To extract uncorrupted features,
then, would seem to require knowing the segmentation in advance.

Nevertheless, we know from from prior work that deep neural
networks can learn their way out of this quandary, when the targets
are distinct classes. So we propose to use more powerful front end
processing to produce a lower-rank affinity matrix, which then may
be amenable to clustering by simpler methods such asK-means. The
simpler clustering methods in turn should provide for easier training,
allowing a more complex front-end to be learned.

Learned feature transformations known as embeddings have re-
cently been gaining significant interest in many fields. Unsupervised
embeddings obtained by auto-associative deep networks, used with
relatively simple clustering algorithms, have recently been shown to
outperform spectral clustering methods [20, 21] in some cases.

In our framework a deep network assigns embedding vectors to
each time-frequency region of the spectrogram, according to an ob-
jective function that minimizes the distances between embeddings of
time-frequency bins dominated by the same source, while maximiz-
ing the distances between embeddings for those dominated by dif-
ferent sources. Thus the clusters in the embedding can represent the
inferred spectral masking patterns of the sources, in a permutation-
free way. Moreover, despite the fixed dimensionality of the network
output, the embeddings can implicitly represent different numbers of
sources.

This objective relates to spectral clustering in that the embed-
dings can be used to approximate an ideal affinity matrix given by
the known segmentation. It is also closely related to the K-means
objective function so that at test time we can infer the assignments
given the embeddings using K-means algorithm.

The experiments show that the proposed method can sepa-
rate speech using a speaker-independent model on an open set of
speakers. We derive partition labels by mixing signals together and
observing their spectral dominance patterns. After training on a
database of mixtures of speakers trained in this way, we show that
the model can generalize to three-speaker mixtures despite training
only on two-speaker mixtures. Although results are preliminary,
this suggests that we may hope to achieve class-independent seg-
mentation of arbitrary sounds, with additional application to image
segmentation and other domains.

2. LEARNING DEEP EMBEDDINGS FOR CLUSTERING

We define as x a raw input signal and as Xi = gi(x), i ∈
{1, . . . , N}, a feature vector indexed by an element i. In the case
of audio signals, i is typically a time-frequency index (t, f), where
t indexes frame of the signal, f indexes frequency, and Xi = Xt,f
the value of the complex spectrogram at the corresponding time-
frequency bin. We assume that there exists a reasonable partition of
the elements i into regions, which we would like to find, for example
to further process the features Xi separately for each region. In the
case of audio source separation, these regions can be defined as the
sets of time-frequency bins in which each source dominates, and
estimating such a partition would enable us to build time-frequency
masks to be applied toXi, leading to time-frequency representations
that can be inverted to obtain isolated sources.

To estimate the partition, we seek a D-dimensional embedding
V = fθ(x) ∈ RN×D , parameterized by θ, such that performing
some simple clustering in the embedding space will likely lead to a
partition of {1, . . . , N} that is close to the target. In this work, V =
fθ(X) is based on a deep neural network that is a global function
of the entire input signal X . Thus our transformation can take into

account global properties of the input, and the embedding can be
considered a permutation- and cardinality-independent encoding of
the network’s estimate of the signal partition. Here we consider a
unit-norm embedding, so that |vi|2 = 1 where vi = {vi,d} and vi,d
is the value of the d-th dimension of the embedding for element i.
We consider the embeddings V to implicitly represent an N × N
estimated affinity matrix V V T .

The target partition is represented by the indicator Y = {yi,c},
mapping each element i to each of C clusters, so that yi,c = 1
if element i is in cluster c. In this case Y Y T , is considered as a
binary affinity matrix that represents the cluster assignments in a
permutation-independent way: (Y Y T )i,j = 1 if elements i and
j belong to the same cluster, and (Y Y T )i,j = 0 otherwise, and
(Y P )(Y P )T = Y Y T for any permutation matrix P .

We can learn affinity matrix V V T , as a function of the inputs,
X to match the affinities, Y Y T , by minimizing, with respect to V =
fθ(X), the training cost function,

CY (V ) = ‖V V T − Y Y T ‖2F =
∑
i,j

(〈vi, vj〉 − 〈yi, yj〉)2 (1)

=
∑

i,j:yi=yj

(
|vi − vj |2 − 1

)
+
∑
i,j

〈vi, vj〉2, (2)

summed over training examples, where ‖A‖2F is the squared Frobe-
nius norm. For the true cluster labels Y̊ , CY̊ (V ) minimizes the dis-
tance between the estimated affinity matrix V V T and the ideal affin-
ity matrix Y̊ Y̊ T . The form (2) pulls the embeddings vi and vj closer
together for elements within the same partition, whereas the second
term pushes all elements apart, preventing collapse to a trivial solu-
tion.

Note that although this function ostensibly sums over all pairs
of data points i, j, the low-rank nature of the objective leads to an
efficient implementation:

CY (V ) = ‖V TV ‖2F − 2‖V TY ‖2F + ‖Y TY ‖2F, (3)

which avoids explicitly constructing the N × N affinity matrix. In
practice, N is orders of magnitude greater than D, leading to a sig-
nificant speedup. Derivatives with respect to V are also efficiently
obtained due to the low-rank structure:

∂CY (V )

∂V T
= 4V (V TV )− 4Y (Y TV ) (4)

This low-rank formulation also relates to spectral clustering in that
the latter typically requires the Nyström low-rank approximation to
the affinity matrix [22] for efficiency. So, rather than making a low-
rank approximation to a complicated full-rank model, deep cluster-
ing directly optimizes a low-rank model so that simple clustering can
be used.

For inference, we compute the embeddings V = fθ(X) on the
test signal X , and cluster the rows vi ∈ RD , by minimizing the K-
means inference cost: Ȳ = arg minY KV (Y ) = ‖V − YM‖2F,
where M = (Y TY )−1Y TV are the C × D means of each clus-
ter. The resulting cluster assignments Ȳ are used as binary masks to
separate the sources. The ideal mask used as our cluster reference
Y̊ , yields the optimal signal to noise ratio (SNR) among all binary
masks. Although continuous masks can yield further improvement,
here we first focus on solving the permutation problem, leaving re-
finement for future work.

The clustering error between the estimates Ȳ , and the labels Y̊ ,
can be quantified by various measures, such as the χ2 error,

dχ2(Ȳ , Y̊ ) = ‖Ȳ (Ȳ T Ȳ )−1Ȳ T − Y̊ (Y̊ T Y̊ )−1Y̊ T ‖2F. (5)

32



[16, 23, 24]. The minima of the training objective, CY̊ (V ), the K-
means objective, KV (Ȳ ), and the clustering error, dχ2(Ȳ , Y̊ ), all
coincide when V V T = Y̊ Y̊ T , leading to Ȳ = Y̊ . More general
bounds between the various objectives are derived in [16, 23, 25].
See [26] for further discussion in the present context. Note that one
might consider directly optimizing theK-means objective as a func-
tion of V . AlthoughKV (Ȳ ) solely minimizes within-class variance,
leading to a degenerate solution, this may be prevented by using the
ratio of within-class to total variance, as in linear discriminant anal-
ysis. We leave this and other alternative objectives for future work.

3. SPEECH SEPARATION EXPERIMENTS

3.1. Experimental setup

We evaluate deep clustering (DC) on a speaker-independent speech
separation task. Mixtures involving speech from same gender speak-
ers can be extremely challenging since the pitch and vocal tract of
the voices are in the same range. We here consider mixtures of
two and three speakers, which include the same gender condition.
Three types of experiments were performed, separating two un-
known speakers, three unknown speakers, or three known speakers.
In the latter case, the systems are trained on mixtures of the three
known speakers at training time, whereas in the other cases training
speakers and test speakers are different.

We created a new corpus of speech mixtures using utterances
from the Wall Street Journal (WSJ0) corpus because existing speech
separation challenge datasets are too limited for the evaluation of
our model. For example, the speech separation challenge [9] only
contains two-speaker mixtures, with a limited vocabulary and insuf-
ficient training data.

A 30 h training set and a 10 h validation set consisting of two-
speaker mixtures were generated by randomly selecting utterances
by different speakers from the WSJ0 training set si_tr_s, and mix-
ing them at various signal-to-noise ratios (SNR) between 0 dB and
10 dB. The validation set was used to optimize some tuning parame-
ters and to evaluate the source separation performance in closed con-
ditions (CC). Five hours of evaluation data were generated similarly
using utterances from 16 speakers from the WSJ0 development set
si_dt_05 and evaluation set si_et_05. The speakers are different
from those in our training and validation sets, and we thus use this
set for open condition (OC) evaluation. Note that previous speech
separation methods (e.g., [27, 28]) cannot handle the open speaker
problem, and require knowledge of the speakers in the evaluation.

We also created three sets of three-speaker mixtures. The first
two sets are similar respectively to the two-speaker validation and
evaluation sets, with 100 three-speaker mixtures obtained from a
pool of many speakers in closed condition (MS-CC) and open condi-
tion (MS-OC). The third one consists in 5000 mixtures for training,
500 mixtures for validation, and 500 mixtures for test, using speech
from a closed set of three known speakers in si_et_05 (3S-CC) .

All data were downsampled to 8 kHz before processing to re-
duce computational and memory costs. The input features X were
the log spectral magnitudes of the speech mixture, computed using
a short-time Fourier transform (STFT) with 32 ms window length,
8 ms window shift, and the square root of the hann window. To
ensure local coherency, a mixture is separately processed in half-
overlapping segments of 100 frames, roughly the length of one word
in speech, to output embeddings V based on the proposed model.

3.2. Training procedure

The binary masks were used to build the target Y to train our net-
work. In each time-frequency bin, the mask values are set to 1
for the source with the maximum magnitude and 0 for the others.
For the two-source case, this corresponds to the ideal binary mask
(IBM) [29]. To avoid training the network to assign embeddings
to silence regions, a binary weight for each time-frequency bin was
used during the training process, only retaining those bins such that
magnitude of the mixture at that bin is greater than some ratio (ar-
bitrarily set to −40 dB) of the maximum magnitude. The network
structure used in our experiments has two bi-directional long short-
term memory (BLSTM) layers, followed by one feedforward layer.
Each BLSTM layer has 600 hidden cells and the feedforward layer
corresponds with the embedding dimension D. Stochastic gradient
descent with momentum 0.9 and fixed learning rate 10−5 was used
for training. In each updating step, to avoid local optima, Gaus-
sian noise with zero mean and 0.6 variance was added to the weight.
We prepared several networks using different embedding dimensions
from 5 to 60. In addition, two different activation functions (logis-
tic and tanh) were explored to form the embedding V with different
ranges for vn,d. For each embedding dimension, the weights for
the corresponding network were initialized randomly according to a
normal distribution with zero mean and 0.1 variance with the tanh
activation. In the experiments with the logistic activation, the net-
work was initialized with the tanh network.

A state of the art class-based BLSTM speech enhancement net-
work [11] was included as baseline for both two-speaker and three-
speaker experiments. Because of the inherent ambiguity in speaker-
independent separation tasks, as to which output should be used for
each speaker, we proposed two training schemes to help with learn-
ing using the class-based LSTM. In one case we used the stronger
source as the training target for each 100 frame segment (BLSTM
stronger). We also propose a permutation-free scheme (BLSTM
permute), where we find the closest clean source to each output of
the network, and use that source to measure the training error and
compute the gradients.

To facilitate comparison, both deep clustering and the classifier
system used the same architectures, except for the final output layers
and objective function. Since deep clustering has a large embedding
layer, we also formulated a class-based BLSTM with the same num-
ber of parameters by using an additional feedforward layer of the
same size as the embedding layer used in deep clustering (BLSTM
permute*). In the three-known-speakers experiment, the speaker
identities are known, so we used the stacked ideal soft mask for each
speaker as target (BLSTM stack). For both experiments, squared
Euclidean distance was used as error measurement for class-based
network. All the BLSTM layers in the class-based model were ini-
tialized with the parameters of the trained deep clustering network
(i.e. D = 40 tanh).

3.3. Speech separation procedure

At test time, speech separation was performed by re-filtering time-
domain signals based on time-frequency masks for each speaker.
The masks were obtained by clustering the row vectors of embedding
V , where V was output from the proposed model for each segment
(100 frames), similarly to the training stage. The number of clusters
is set to the number of speakers in the mixture. We evaluated two
types of clustering methods: global K-means on the embeddings of
the whole utterance and local K-means, where clustering is done
separately on each 100-frame segment. In both cases, we choose the
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Table 1: SDR improvements (dB) for different separation methods

method CC OC
oracle NMF 5.1 -
CASA 2.9 3.1
DC local K-means 6.5 6.5
DC global K-means 5.9 5.8
BLSTM stronger 1.3 1.2
BLSTM permute 1.3 1.3
BLSTM permute* 1.4 1.2

Table 2: SDR improvements (dB) for different embedding dimen-
sions D and activation functions

CC OC
model DC local DC global DC local DC global
D = 5 −0.8 −1.0 −0.7 −1.1
D = 10 5.2 4.5 5.3 4.6
D = 20 6.3 5.6 6.4 5.7
D = 40 6.5 5.9 6.5 5.8
D = 60 6.0 5.2 6.1 5.3
D = 40 logistic 6.6 5.9 6.6 6.0

best correspondence in the least-squares sense between the recov-
ered sources and target signals.

Given that DC can represent an arbitrary number of clusters, an
interesting question is whether it can generalize to the case of three-
speaker mixtures without changing the model parameters. Speech
separation experiments on three-speaker mixtures were thus con-
ducted using the network trained with two-speaker mixtures, by sim-
ply changing the number of clusters from 2 to 3 in the clustering step.

Besides the class-based BLSTM, we used supervised sparse
non-negative matrix factorization (SNMF) as another baseline [27,
28]. While SNMF is amenable to separating male-female mix-
tures when using a concatenation of bases trained on speakers of
different genders, in preliminary experiments it failed for same-
gender mixtures. We thus give SNMF an unfair advantage by using
speaker dependent models with oracle information about the speak-
ers present at test time. Wiener-filter like masks are built using the
estimated models and applied to the mixture, and the separated sig-
nals are obtained by inverse STFT. We used 256 bases per speaker,
and magnitude spectra with 8 consecutive frames of left context
as input features. We also included an unsupervised CASA-based
system [18] as another baseline for the two-speaker experiment.

For all experiments, performance was evaluated in terms of av-
eraged signal-to-distortion ratio (SDR) using the bss_eval tool-
box [30]. The initial SDR averaged over the mixtures was 0.2 dB
for two-speaker mixtures and −3.0 dB for three-speaker mixtures.

4. RESULTS AND DISCUSSION

As shown in Table 1, both local and global clustering methods sig-
nificantly outperform all baselines. Note that due to stability issues
with the CASA code provided by authors of [18], evaluation could
only be run on a subset of about 40 % of the data, but there was no
significant difference for this subset in starting SNR or in the im-
provements of other algorithms. The global K-means clustering of
the whole utterance performs only slightly worse than local cluster-
ing. As the system was only trained with individual segments, this
suggests that the network learns globally important features. The
performance of DC is similar in open and closed conditions, indicat-
ing that it can generalize well to unknown speakers.

In Table 2, the D = 5 system completely fails, either because
optimization of the current network architecture fails, or the embed-
ding fundamentally requires more dimensions. The performance of
D = 20, D = 40, D = 60 is similar, showing that the system can

Table 3: SDR improvement (dB) for mixtures of three speakers.
Left: three-speaker separation using DC network trained on two-
speaker mixtures. Right: separation of three known speakers.

method MS-CC MS-OC
oracle NMF 4.4 -
DC local 3.5 2.8
DC global 2.7 2.2

method 3S-CC
oracle NMF 4.5
DC local 7.0
DC global 6.9
BLSTM stack 6.8
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Fig. 1: Example of three-speaker separation. Top: mixture log spec-
trogram. Middle: IBM. Dark blue shows silence. Bottom: output
mask from proposed system trained on two-speaker mixtures.

operate in a wide range of parameter values. We arbitrarily used tanh
networks in most of the experiments because of their larger embed-
ding space than logistic networks. However, in Table 2, we verify
that the logistic network performs about the same.

All class-based BLSTMs performed poorly in non-speaker-
dependent settings, even when carefully trained (Table 1, right).
Only for the speaker-dependent 3S-CC set, the class-based model
performed similarly to DC (Table 3). We can expect other speaker-
dependent methods [6, 31] to follow the same trend. This confirms
that class-based networks lack the ability to resolve the permutation
problem introduced by same-class mixtures. In contrast, in DC the
permutation is solved by the clustering step, which allows modeling
power to focus on the distinction between sources.

We see in Table 3 (left) that DC remarkably can also separate
three-speaker mixtures, even when only trained on two-speaker mix-
tures. Figure 1 shows an example of separation for three-speaker
mixture in the open validation set. Of course, including mixtures in-
volving more than two speakers at training time should improve per-
formance further, but the method does surprisingly well even without
retraining. Performance is now worse than oracle NMF, but is again
much better once we allow DC to focus on a limited set of speakers,
as shown in Table 3 (right): there, DC is trained on mixtures of the
same three speakers used for test.

We evaluated deep clustering in a variety of conditions and pa-
rameter regimes, on a challenging speech separation problem. Since
these are preliminary results, we expect further refinement of the
model will lead to significant improvements. Alternative network
architectures with different time and frequency dependencies, such
as deep convolutional neural networks [32] or hierarchical recursive
embedding networks [33], could be helpful in terms of learning and
regularization. Finally, scaling up training on databases of more dis-
parate audio types, as well as applications to other domains such as
image segmentation, are prime candidates for future work.
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