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ABSTRACT

A new attempt for estimating the direct-to-reverberant ratio (DRR)
by mapping the power spectral density (PSD) of the direct sound and
reverberation using the deep neural network is reported. The method
finds the correct DRR from the PSD estimated with an algorithm us-
ing a microphone array. The experimental results using a recording
of a reverberant speech signal, which included various environmen-
tal noise, reveal that the proposed method is effective in improving
the accuracy of DRR estimation and robust against various noise.

Index Terms— direct-to-reverberant ratio, deep neural network,
microphone array, power spectral density, beamspace

1. INTRODUCTION

In recent years, the estimation of the direct-to-reverberant ratio
(DRR) has been attracting interests in acoustic signal processing
due to its wide variety of applications [1, 2, 3, 4, 5, 6, 7]. By re-
flecting the growth of interest, in 2015 the Acoustic Characterisation
of Environments (ACE) Challenge was organised by the IEEE Au-
dio and Acoustic Signal Processing Technical Committee, which
included a task of evaluating methods for estimating the DRR [8].

The room impulse response (RIR) had to be measured for cal-
culating the DRR of a reverberant enclosure. However the measure-
ment of the RIR is actually a burden for application users since spe-
cial equipment and software are needed. This motivated researchers
to address the blind estimation of the DRR, which does not require
RIR measurement. Due to the difference in the propagation prop-
erties of the direct sound and reverberation, many current methods
use a microphone array to utilise the spatial properties of the prop-
agation. The coherence of direct sound and reverberation between
two microphones has been one of the most commonly utilised prop-
erties in previous studies on DRR estimation [3, 4, 6, 9, 10, 11]. Due
to various errors in practical recordings, coherence-based methods
sometimes derive a complex final DRR estimate, which is not a re-
alistic value for the DRR.

In the meantime the authors also proposed a few DRR estima-
tion methods that derive the DRR by taking the ratio of the power
spectral density (PSD) of the direct sound and reverberation being
estimated by using multiple beamformings [12, 13]. A similar ap-
proach using directional microphones instead of beamforming has
also been reported [14]. Although one of the advantages with this
approach is that it does not result in a complex DRR estimate, im-
proving the estimation accuracy of the DRR to some extent, some
significant offsets and variances were observed from the estimation
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results when a method was applied to normal speech signals [13].
It is hypothesised that those offsets occurred because the estimated
PSD had been affected by several errors. Such errors include the as-
sumptions introduced to the properties of the direct sound and rever-
beration as well as the statistical uncertainty of the observed signals.
Thus, estimation accuracy can be improved if a mapping method that
can absorb the errors in the estimated PSD is introduced.

In the last few years, the deep neural network (DNN) [15] has
been widely applied to various fields because of its very robust abil-
ity to map a feature to another piece of information. It is anticipated
that the DNN can mitigate the detrimental effects of errors by map-
ping an effective feature that represents the DRR, e.g. coherence
and PSD, to the correct DRR. Being motivated by this thought, this
study utilises the DNN for effectively mapping the PSD estimated
with the previous method [13] to the correct DRR. The effect of in-
troducing the DNN is investigated by conducting experiments using
speech signals recorded in different acoustic environments. In con-
trast to other previous studies, this study is the first attempt to apply
a statistical mapping method to an existing feature to improve DRR
estimation accuracy.

2. ESTIMATING PSD OF DIRECT SOUND AND
REVERBERATION USING MICROPHONE ARRAY

Like the previous method [13], the proposed method also estimates
the PSD of the direct sound and reverberation using a microphone
array. The principle of PSD estimation is briefly explained in this
section.

2.1. Microphone array observation in reverberant environment

Given that the transfer function from a sound source to the m-th mi-
crophone of an M -sensor microphone array in a reverberant room
is denoted as H (™ (w) with w being the frequency, it can be sepa-
rated into two components, as in (1); direct sound and reverberation,
where the latter is assumed to include both the early reflections and
late reverberation.

H™ (w) = HS™ (w) + HY™" (w), )

Here HY™ (w) and H{™ (w) are the transfer functions of the direct
sound and reverberation, respectively.

Let X (™) (w, t) be the observed signal of the m-th microphone
in the time-frequency domain where t is a frame index. Using (1),
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X (™) (4w, t) can be modelled by

X (w,) = (HSY (@) + H{V @) S@,0), @)
where S(w, t) is the spectrum of a sound source.

By further decomposing the transfer functions in (2) into two
components, i.e. the transfer function from the sound source to a
reference point located close to the microphone array (e.g. the centre
of the microphone array), and that from the reference point to each
microphone, the transfer function becomes

(m)

H](Dm)(w) = HDref(w)efjwﬂD , 3)
o (m)
H (W) = / Hpzet0(w)e 7970 dQ, )
Q

where Hpres(w) and Hgyref,0 (w) are the transfer functions from the
sound source to the reference point with regard to the direct sound
and reverberation, respectively. The term Tém
arrival compared to the reference point.

Using the steering vector [16] of an array for the solid angle

Q = {6, ¢}, where 6 is the azimuth and ¢ is the zenith angles

(M)

) is the time delay of

(1) .
© € [0,27), ¢ € [0,7]), a(w) = [e7@ ... emiwma]T
the observation vector of the microphone array is defined as
X(wa t) = [X(l) (w7 t)a T XUW) (w7 t)]T
= aq, (w)Sp(w,t) + / ag(w)Sr,o(w,t)dQ, (5)
Q
where 7" denotes the transpose of a vector or a matrix.
SD(w,t) = HDref(w)S(w,t), (6)
Sr,0(w,t) = Heret,0(w)S(w, 1), )

are the direct sound and reverberation arriving from the angle €2 ob-
served at the reference point, respectively.

2.2. Beamforming output

Assuming that an arbitrary beamformer [ is applied to the micro-
phone array observation vector x(w,t), the output signal of the
beamformer is represented by

Vir,i(w) = wi (w)x(w, 1),

®

where w;(w) is the weight vector of beamformer ! defined by
1 M
wi(w) = [Vvl( )(w)7 T 7Wl( )(w)]T'
The PSD of the beamformer’s output is then approximated by
the summation of the PSD of the direct sound and reverberation mul-
tiplied by the gain of the beamformer:

Pgri(w) = E[|Ysri(w)|]:

~ Giop (w)Pp(w) +/ G 0(w)Pro(w)dQ, 9)
Q

where Pp (w) and P o (w) are the PSDs of Sp (w, t) and Sgr,o(w, t),
respectively; E[-]¢ is the expectation over frames that can be ap-
proximated by the average of several frames and Gj,q(w) is the
gain of the beamformer for the angle Q2 defined by G qo(w) =
|wi (w)ag(w)|?. In the derivation of (9), the direct sound and
reverberation are assumed to be mutually uncorrelated.

Since the reverberation is commonly assumed as a diffuse sound,
an isotropy can be imposed for its propagation. Thus, the PSD of the
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Fig. 1. Block diagram of proposed method

reverberation can be replaced with a constant value that holds for all
Q,ie.

Pro(w) = ?R(w) = const. VQ. (10)

Thus, the PSD of the beamformer output in (9) becomes
PBF,[(CU) = Gl’QD (w)PD (w) + ?R(w)/ GLQ(w)dQ. (11)
Q

Given that there are two beamformers, which have different di-
rectivity patterns being applied to the microphone array observation,
the output PSD of the two beamformers can be formulated in a ma-
trix form expressed by

|t | = Gmle) e || |
Pgr(w) G(w) Pmp(w(>12)

Because the elements in Ppr(w) are derived from the microphone
array’s observation and that in G(w) are known a priori, the PSD of
the direct sound and reverberation can be estimated by solving the
simultaneous equation using the least squares method

Pemp(w) = G (w)Ppr(w), (13)

where * denotes an estimated value.

3. DNN-BASED DRR ESTIMATION USING ESTIMATED
PSDS IN BEAMSPACE

In the previous study [13], the DRR was derived by simply calcu-
lating the ratio of the estimated PSD given by (13), i.e. DRR [dB]
= 10log;, %W i;D ((:i Obviously the overall DRR estimation pro-
cess is determi?lisgc, however since audio signals observed in a prac-
tical indoor environment are most often statistical, such determinis-
tic approach sometimes does not provide an accurate estimate of the
DRR. For minimising the variance in the estimation errors of the
DRR, the proposed method introduces a statistical approach that op-
timises the mapping between the estimated PSD and targeted DRR.

Among various mapping methods available, the proposed
method employs the DNN, a state-of-the-art method that has been



attracting interests in many engineering fields recently. With the
proposed method, the DNN is expected to provide an accurate DRR
by taking the estimated PSD of the direct sound and reverberation
as the features and mapping them to the DRR.

Let the following feature vector consisting of the estimated PSD
at different frequencies be set to the input layer of a DNN with N-
layers

, Po(wo), Pr(w1),. .., Pr(wo)]",

where wo is the number of frequency bins where the PSD is avail-
able. Given that the network parameter z includes the weights
Z® ... Z™N) and the biases b, ..., b™ ul™ and q'™ are
calculated by a recursive update for N — 1 times expressed by

aV = [Po(w1),. .. (14)

u™ = ZM gV 4 p,

q™ = £ (um)) .

Provided that the number of nodes in the n-th layers is denoted as
Jn, these parameters are represented by vector forms

15)
16)

u™ = [uﬁ”), R u(")r , a7
= [a",a] (1)
7y .
VAR : : , (19)
25 250
b™ = [bﬁ”%..wa,?r, (20)
£ (u<">) _ [f(m (ugm) D (“(fi))]T @1

For the activation function f(™ (+), either a sigmoid function or an
identity mapping function is chosen depending on the layer.

1/(1 + exp(—u)) 1)

-

Given that the number of nodes in the N-th layer is 1, the estimated
DRR is expressed by

(n=2,...
N)

N —
(n = ’ (22

(N)

F'=q (23)

In the rest of this paper the estimated DRR using z is denoted as
I'(q";2).

Like other statistical mapping algorithms, the performance of
the DNN is greatly affected by the initial values of the network pa-
rameters. Thanks to the recent progress in research, a set of appro-
priate initial values can be found by pre-training based on the deep
belief network (DBN) [17]. In the DBN, the initial values of the
network parameters are estimated layer-by-layer using stacked re-
stricted Boltzmann machines (RBMs). In this study, the contrastive
divergence (CD) [15, 18] is utilised to specify an appropriate update
amount for the network parameters of each RBM.

Once the initial values are given to the network parameters, these
parameters are then optimised by the back propagation [19] in order
to minimise the estimation error of the DRR. Assume K PSD sam-
ples with its true DRR used as the supervisory signals are denoted
as

{(@,T1), (a8, T2), ..., (aW,Tx)}. (24)

28

where ~denotes the true value. The procedures in (15) and (16) ap-
plied to K samples can be represented by a matrix form given by

u™ — Z(")Q("*l) +b™1T (25)
Q(n) f(n)(U(n)) (26)
where
U™ =™, u), 27)
Q" = [qﬁ”), a). (28)

A mean square error is used to measure the difference between the
true and estimated DRRs.

1K
(2) = 5> I Tw = T(
k=1

Using the back propagation, the gradient of the network parameters
is recursively calculated from the output layer (n = N) towards the
input layer (n = 1). Given I := [I'1, ..., ['x], the gradient at the
n-th layer A(™ is derived by

(af";

z) ||* (29)

A —
f(n)/(U(")) o) (Z(n+1)TA<n+1)) (n=2---,N—1) 30)
r-qQm (n=N).

Here, ©® denotes an element-wise product of matrices. The gradient
of the error functions is derived by
9Z™ =

%A(’”Q(”’”T, 31)

1
b = ?A“ﬁ?{, 32)
Finally, the network parameters are updated by adding values
derived from the gradient

Z™ 7™ 4 AZ™, (33)
b™ « p™ 4 Ab™ 34)
where the perturbations for each update are calculated by
AZ™) = paz ™ — e (02 + 227, (35)
Ab™ = Ab™M* — cgb™, (36)

Here, AZ(™* and Ab(™* are the perturbations of the previous up-
date, € is the learning rate, ¢ and A are the momentum coefficient
and weight decay, respectively.

4. EXPERIMENTS

The performance of the proposed method was investigated by eval-
uating the accuracy of the estimated DRR and comparing it to the
previous method [13] which does not rely on a statistical mapping
method.

A corpus of impulse responses measured using a microphone
array located in four rooms with different acoustical characteristics
was employed in the experiment. The microphone array consisted
of three unidirectional microphones; the orientation of each micro-
phone differed from the others by 120 degrees. The sound source lo-
cation was determined by the combination of the angle and distance



Table 1. Parameters used in experiment

Sampling rate 16 kHz
FFT length 32 ms
# of microphones, M 3

# of rooms

4 (rooms A, B, C, and D)

microphone array locations

centre, close to wall

angle of sources

5 (0, 45, 90, 135, 180 degrees)

distance of sources

6 (0.25,0.50, 0.75, 1.0, 1.5, 2.0 m)

# of source signals

16 (training), 8 (evaluation)

# of background-noise types

3

# of SNR patterns

7 (20, 15, 10, 5, 0, -5, 10 dB)

# of signals for training, K

80640 (=4-2-5-6-16-3-7)

# of signals for evaluation 40320(=4-2-5-6-8-3-7)

# of layers, N 4

# of nodes, J, Ji: 514, Jo: 640, J3: 640, Jy: 1

Learning coefficient, € 0.02, 0.01, 0.005, 0.0025, 0.0001

Iteration number 100 (for each €)
Momentum coefficient, 0.5 (first 5), 0.9 (after 6)
Decay weight, A 0.0002

from the microphone array. Five different angles and six different
distances were available in the corpus.

Sentences spoken by male and female speakers for 8 sec were
used as the sound source. Sixteen sentences were utilised for the
training and eight sentences different from those used for the training
were employed for the evaluation (i.e. open test). To simulate a mi-
crophone observation, one of the speech signals was convolved with
the measured impulse response, then environmental noise recorded
separately in the same rooms was added at different signal to noise
ratios (SNRs). The environmental noise included three different
types typically observed in practical environments: office, exhibi-
tion, and shopping centre. The true DRR used as a supervisor in
the training process was calculated from an impulse response of the
same room measured with an omni-directional microphone using the
definition in [20] ranging from 1.5 up to 25.2 dB.

Two beamformers designed using the minimum variance distor-
tionless response (MVDR) [21] were employed for estimating the
PSD using (13). The angle of the direct sound 2p was estimated
using the beamforming method [21]. The estimated PSD at each fre-
quency bin was normalised to fit between 0 and 1 then was passed
to the network parameter (14) for running the DNN. The network
parameters were optimised by the back propagation after applying
pre-training. The number of datasets used for the training was bal-
anced across the parameters. The other parameters used in the ex-
periment are summarised in Table 1. The accuracy of estimating the
DRR was evaluated by calculating the estimation error of the k-th
sample given by pi = Iy — Ty

Figure 2 shows the distribution of the estimation error in the
different rooms for different SNR. The previous method resulted in
degraded estimation accuracy when the input SNR was decreased.
In contrast, the proposed method exhibited steady performance even
when the input signal was severely contaminated by noise. Since
the proposed method trained the network parameter to minimise the
squared errors across all samples, as in (29), it maintained its perfor-
mance even if the effect of the noise was significant. The estimation
error might have been increased had the number of datasets across
SNR been unbalanced which needs a further investigation. Another
noticeable trend was that the proposed method was less sensitive to
the change in rooms. Overall, these findings imply the great poten-
tial of using a statistical mapping method for improving the accuracy

29

Previous method

ey

20 15 10 5 0 -5 -10 Total
SNR [dB]

Proposed method

TITTEPTT

DRR estimation error [dB]
DRR estimation error [dB]

20 15 10 5 0 -5 -10 Total
SNR [dB]

(a) Room A

Proposed method Previous method

R TET P!

b oo w S

-30

DRR estimation error [dB]
sy
DRR estimation error [dB]
oS
——
——
—0—
——
——

20 15 10 5 0 -5 -10 Total
SNR [dB]

20 15 10 5 0 -5 -10 Total
SNR [dB]

(b) Room B

Proposed method Previous method

E} 5 = 5
EITTPPTITRT
2 2
5 s 5 s
a -10 = -10
S . ]
b1 -15 s -15 %
E 20 £ 20
Z 25 % 25
- -
4 30 § 30
a a
20 15 10 5 0 -5 -10 Total 20 15 10 5 0 -5 -10 Total
SNR [dB] SNR [dB]
(¢) Room C
Proposed method Previous method
— 10 — 10
RITTEE: 3
g 0 % %l % 5 0
S 5 s
g -10 g -10
Z s g1
£ E2
Z 25 225
é -30 § -30
a a
20 15 10 5 0 -5 -10 Total 20 15 10 5 0 -5 -10 Total
SNR [dB] SNR [dB]
(d) Room D

Fig. 2. Experimental results from evaluating accuracy of estimating
DRR using proposed and previous methods in different rooms

of DRR estimation in various acoustic environments.

5. CONCLUSION

This study has reported on a new attempt to use the DNN for im-
proving the accuracy of the DRR estimation problem. The DNN is
utilised to map an effective feature, such as the PSD, to the correct
DRR to mitigate the errors included in the feature. Although the
introduction of the DNN, which requires a training process, makes
DRR estimation no longer a blind method, significant improvement
in the estimation accuracy is convincing such that the use of the DNN
in combination with an effective feature has the potential to provide
better DRR estimation accuracy, provided the application allows the
training process.

Further experiments using the ACE corpus [8] to investigate the
performance of the proposed method and compare it to other meth-
ods would be a suggested future work.
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