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ABSTRACT

Many acoustic signal enhancement applications require adaptive fil-
ters with a long impulse response, but with a small number of fil-
ter parameters. Fixed-poles infinite impulse response (IIR) adaptive
filters based on orthonormal basis functions (OBFs) present advan-
tages over finite impulse response filters and other IIR filters, assur-
ing stability and fast global convergence in the adaptation of the filter
parameters. A scalable algorithm is introduced for the estimation of
the poles of an adaptive OBF filter from multichannel input-output
data. The set of poles, common to all the acoustic channels con-
sidered, is estimated in parallel to the adaptation of the linear filter
parameters. It will be shown that the result of the identification with
common poles is quite robust to variations in the room transfer func-
tion, suggesting the possibility that poles may be kept fixed after
estimation.

Index Terms— Orthonormal basis functions, parametric mod-
eling, room acoustics, adaptive filtering, identification.

1. INTRODUCTION

Many acoustic signal enhancement applications require a compact
yet accurate approximation of the room impulse response (RIR) at
one or multiple locations of the source and the receiver inside a
room. Parametric modeling and identification of room acoustic sys-
tems aim at representing a room transfer function (RTF) as a rational
function in the z-domain that can be implemented using a digital fil-
ter, under the assumption of the room being a stable, causal and lin-
ear system. However, the RTF can be time-varying, due for instance
to changes in the source or microphone position, thus requiring the
filter parameters to adapt for tracking the variation. Filters having a
finite impulse response (FIR) are widely used because of their sim-
plicity, but they often require a large number of parameters. Filters
having an infinite impulse response (IIR) can provide a reduction in
the number of filter parameters, but they suffer from problems of
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instability and convergence to local minima, also introducing extra
complexity in the estimation and adaptation of the parameters [1].

Fixed-poles IIR filters based on orthonormal basis functions
(OBFs) [2] (henceforth called OBF filters) represent an appealing
alternative to conventional IIR filters, especially in the modeling
of room acoustic systems [3]. The filter structure is an orthonor-
malized parallel realization of second-order all-pole filters, each of
these corresponding to a resonator. A RTF can then be modeled as
a linear combination of resonances, whose frequencies and band-
widths are determined by the position of the poles. As for other
fixed-poles IIR filters [4], OBF filters can increase the modeling
accuracy dramatically compared to FIR filters by moving the poles
away from the origin, thus reducing the distance between the true
poles of the system and the poles of the filter [5]. Moreover, stability
of the filter can be easily guaranteed by constraining the poles to
be inside the unit disc, while preserving the global convergence
properties of FIR filters [4]. The main advantage of OBF filters
over other fixed-poles IIR filters is orthogonality, which provides
numerical well-conditioning and fast convergence of the filter adap-
tation [6, 7]. Since the poles appear in the denominator of the filter
transfer function (TF), nonlinear techniques are usually necessary to
estimate the poles [4, 6, 8]. A scalable matching pursuit algorithm
named OBF-MP was proposed in [9], where the nonlinear problem
was avoided by defining a grid of candidate poles and iteratively
selecting those providing the best approximation of a measured
RIR. An extension of the algorithm, named OBF-GMP [10], was
proposed for estimating a set of poles common to multiple RIRs
measured at different source-receiver positions inside a room, thus
obtaining a parametrization of a set of RIRs which is more compact
and less sensitive to variations of the RTF. The poles are usually
estimated off-line, starting from a set of RIR measurements [6]. In
[11], a recursive separable nonlinear least-squares (LS) method was
proposed for the on-line estimation of both poles and linear filter
parameters from input-output data and applied to the identification
of acoustic echo systems [12], but limited to the case of an OBF
filter with a single repeated pole. However, while the adaptation
of the linear filter parameters is straightforward [4], the gradient-
based adaptation of a set of non-repeated poles is computationally
expensive [13].

A block-based version of the OBF-MP algorithm, called BB-
OBF-MP, was proposed in [14] for the iterative estimation of the
poles from short input-output data segments, where the linear filter
parameters are estimated at each block using linear regression. In
this paper, the block-based algorithm is applied to an adaptive OBF
filter using the least mean squares (LMS) algorithm. A common set
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of poles estimated from multichannel input-output data is then kept
fixed and validated on input-output data corresponding to source and
receiver positions in the room not used in the estimation. It will be
shown that the common poles parametrization is quite robust to vari-
ations in the RTF, suggesting the possibility of keeping the poles
fixed after estimation, thus removing the need for any adaptation.
This paper is structured as follows. In Section 2, adaptive OBF
filters in the context of room acoustics modeling are briefly intro-
duced. In Section 3, the algorithm for the estimation of the poles of
an adaptive OBF filter is described. In Section 4, simulation results
are presented, and Section 5 concludes the paper.

2. ROOM ACOUSTICS MODELING USING OBF FILTERS

OBF filters are particularly appropriate for modeling room acoustic
systems [3]. The filter structure is an orthonormalized parallel real-
ization of second-order all-pole filters, each one defined by a pair of
complex-conjugate poles. Each second-order all-pole filter, having a
TF as in (1), acts as a resonator, so that a RTF can be modeled as a
linear combination of resonances. The resonance frequency ωi and
bandwidth ζi are determined respectively by the angle ϑi = ωi/fs
and the radius ρi = e−ζi/fs of the pair of complex-conjugate poles
pi = [pi, p

∗
i ] = ρie

±jϑi (with fs being the sampling rate and ∗

indicating complex conjugation). Notice that, when the resonances
have a large bandwidth, the actual central frequency of the resonance
related to pi deviates slightly from its theoretical value ωi, due to the
influence of p∗i and of other poles as well [15, 16].

For each all-pole filter, two real-valued basis functions are gen-
erated. A second-order all-pass filter, having a TF as in (2), is used
to orthogonalize the basis functions defined by pi+1 with respect to
those generated by pi (the poles pi and p∗i are canceled by the zeros
in 1/pi and 1/p∗i ). A pair of orthonormalization filters N±

i (z) is then
used to enforce orthonormality between the two basis functions of
each pole pair. The resulting OBF filter structure is shown in Fig-
ure 1 for m pairs of complex-conjugate poles p = [p1, . . . ,pm].
Orthonormalization filters with a TF as in (3) result in the so-called
Kautz filter, but a different choice can be made, as explained in [17].

Pi(z) =
1

(1− piz
−1)(1− p∗i z−1)

, (1)

Ai(z) =
(z−1 − pi)(z

−1 − p∗i )
(1− piz

−1)(1− p∗i z−1)
, (2)

N±
i (z) = |1± pi|

√
1− |pi|2

2
(z−1 ∓ 1) . (3)

As can be seen in Figure 1, an OBF filter has a transversal struc-
ture, linear in the filter parameters θ±i (n) = [θ+i (n), θ

−
i (n)] (with

i = 1, . . . ,m and n = t/fs the discrete time variable). The inter-
mediate signals κ±i (n) = [κ+

i (n), κ
−
i (n)] generated by a pair of

OBFs are filtered versions of the input signal u(n), where the TF

of a pair of OBFs is given by Ψ±i (z) = N±
i (z)Pi(z)

∏i−1
j=1 Aj(z),

and hence κ±i (n) = Ψ±i (z)u(n). Since the OBFs form a complete
set in the Hardy space on the unit disc under mild assumptions, any
stable rational TF can be realized with arbitrary accuracy by a linear
combination of a finite number of OBFs [17], with the output signal
then given by

y(n,p,θ) =
m∑
i=1

κ+
i (n)θ

+
i (n) +

m∑
i=1

κ−i (n)θ
−
i (n) , (4)

or in vector form as y(n,p,θ) = κT (p, n)θ(n), with κ(p, n) =
[κ±1 (n), . . . ,κ

±
m(n)]T and θ(n) = [θ±1 (n), . . . ,θ±m(n)]T , both

u(n)
z−d

a0(n)
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Fig. 1. The OBF filter for m pairs of complex-conjugate poles.

with dimensions 2m×1. The number of OBFs necessary to achieve
a certain level of accuracy depends on the distance between the
true poles of the systems and the fixed poles in the denominator
of the filter TF [5]. It is then clear that a higher accuracy can be
achieved by fixed-poles IIR filters, such as OBF filters, compared
to FIR filters, where all poles are fixed at the origin. It follows that,
although OBF filters introduce additional computational complexity
per linear filter parameter compared to FIR filters, this extra com-
plexity is compensated by a reduction in the number of linear filter
parameters by an appropriate selection strategy for the position of
the poles (such as the OBF-MP algorithm) [3].

2.1. Adaptation of linear filter parameters

Fixed-pole adaptive filters (FPAFs) [4] have been proposed to over-
come practical problems related to adaptive IIR filters, such as finite-
precision effects, convergence and stability [1]. Linearity in the
filter parameters induces globally convergent adaptation under the
same conditions and with the same implementation complexity as
for the adaptation scheme of FIR filters with the same number of
adaptive parameters [4]. It follows that standard adaptive algorithms
can be readily applied. Adaptive OBF filters share all the proper-
ties of FPAFs, with the additional property of orthogonality, which
ensures better-behaved and faster convergence of the adaptation al-
gorithm [5]. The adaptation rule for the recursive estimation of the
linear filter parameter vector θ(n) is given by (with L(n) a gain
vector)

θ̂(n+ 1) = θ̂(n) +L(n)
(
y(n)− κT (p, n)θ̂(n)

)
. (5)

The simplest choice for the gain vector is L(n) = μκ(p, n),
with μ the step size, in which case (5) corresponds to the LMS algo-
rithm. Different choices of the gain vector lead to different adapta-
tion algorithms, such as the recursive least squares (RLS) algorithm
or the Kalman filter [4, 5]. Here, only the LMS algorithm is con-
sidered for its simplicity. It should be noted that, as opposed to FIR
filters where the regression vector is made of the last M samples of
the input signal (with M the model order), the regression vector for
the adaptive OBF filter is the vector of intermediate signal samples
κ(p, n). A known fact for the LMS algorithm is that the conver-
gence is determined by the choice of the step size μ and by the eigen-
value spread of the correlation matrix of the intermediate signals
R = E{κ(p, n)κT (p, n)}, with E denoting the expected value.
The convergence speed is determined by the minimum eigenvalue of
R, λmin, accordingly to the exponential factor (1 − μλmin)

n, with
a larger value for λmin yielding faster convergence [18]. A step size
μ < 1/λmax, with λmax the maximum eigenvalue of R, guarantees
that the exponential factor decays to zero, so that the convergence
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rate in the mean for the LMS algorithm can be no faster than [5](
1− λmin

λmax

)n

=

(
1− 1

C(R)

)n

, (6)

with C(R) the condition number of R. Therefore, a small (close to
1) condition number implies a faster convergence.

For OBF filters with a white input signal, with constant spec-
tral density Φu(ω) = c, the convergence rate is optimal within the
class of FPAFs, as the correlation matrix is optimally-conditioned
(R = cI , with I the identity matrix). For nonwhite input signals,
the optimal convergence rate is lost. However, OBF filters are par-
ticularly robust in terms of numerical well-conditioning also in this
case [19], so that the condition number remains small, even when a
large number of basis functions is used.

3. IDENTIFICATION ALGORITHM

The main issue with adaptive OBF filters is the adaptive estimation
from input-output data of the poles, which appear in the denomi-
nator of the TFs Ψ±i (z), thus requiring nonlinear estimation tech-
niques (see e.g. the method in [11]). Gradient-based adaptive algo-
rithms, such as the LMS, demand the computation of a sensitivity
function (i.e. the gradient of the filter TF w.r.t. a parameter vector),
which for an OBF filter with non-repeated poles is particularly com-
plicated [13]. Since the adaptive estimation of the poles does not
seem to be very practical, a multichannel identification algorithm is
proposed in this paper, where the poles of an adaptive OBF filter
are estimated from single-input multiple-output (SIMO) data sets. A
set of common poles is estimated with a multichannel version of the
BB-OBF-MP algorithm [14], modified to be applied to an adaptive
OBF filter using the LMS algorithm as follows. In each block (i.e.
every Nf samples), one pole pair is selected from a user-defined
grid of candidate poles as the one that produces the pair of OBFs
that is mostly correlated with the last Nf samples of the estimation
error signal produced in each acoustic channel considered, similarly
to the selection strategy used in the OBF-GMP algorithm [10]. The
idea suggested here is that the set of poles estimated from SIMO data
is common to all the acoustic channels considered in the estimation
and is also robust to variations of the RTF, so that these poles can be
kept fixed after estimation, without the need for adapting the position
of the poles.

The proposed algorithm aims to build a SIMO adaptive OBF
filter including one common pole pair at a time, so that the mean-
square-error (MSE) of the acoustic channel r (with r = 1, . . . , R) is
minimized,

minimize
pA
f

,Θ̂(n)
e2(n) = (y(n)− ŷ(n))2 =

(
y(n)− κ(pAf , n)Θ̂(n)

)2

,

(7)
where e(n) = [e1(n), . . . , eR(n)] is the vector of the estimation
errors for the R channels at time n, y(n) = [y1(n), . . . , yR(n)] is
the vector of the output signals and ŷ(n) = [ŷ1(n), . . . , ŷR(n)] the
vector of the estimated outputs of the adaptive OBF filter. This vec-
tor is obtained by the linear combination of the intermediate signals
κ(pAf , n) = [κ±1 (n), . . . ,κ

±
f (n)] (κ±i (n) = [κ+

i (n), κ
−
i (n)]),

which are the input signal u(n) filtered by the orthonormal ba-
sis TFs generated by the active pole set pAf (with f the block
index, corresponding to the number of common poles in the ac-
tive set). The intermediate signals are weighted by the linear
filter parameter vectors θ̂r(n) = [θ̂r±

1 (n), . . . , θ̂r±
f (n)] (with

θ̂r±
i (n) = [θr+i (n), θr−i (n)]) related to the R channels, which are

u(n)
K(z,pAf )

ŷ(n) = κ(n)Θ̂(n)

+

−
buffer

Θ̂(n+ 1) = Θ̂(n) + μκ(n)Te(n)
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Compute correlations
αr
i

s = argmaxi

∑R
r=1 α

r
i

Update pole set
pA
f+1 = [pA

f , ps]

Hr(z)Hr(z)Hr(z)

af (n) κf+1(n)

Df+1
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s±

y(n)
e(n)

Ef

κ(n)

Θ̂(n+ 1)

ŷ(n)
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pA
f+1

while f ≤ Np do

Fig. 2. The identification algorithm block diagram. Inbound dashed
lines represent initial conditions and inputs, while outbound dashed
lines represent outputs.

stacked in the matrix Θ̂(n) = [θ̂1(n), . . . , θ̂R(n)] of dimensions

2f × R. The linear filter parameter matrix Θ̂(n) is updated using
the LMS adaptation rule

Θ̂(n+ 1) = Θ̂(n) + μκ(pAf , n)
(
y(n)− κT (pAf , n)Θ̂(n)

)
.

(8)
Initially (f = 0), the active pole set pAf is empty, so that no esti-
mated output vector ŷ(n) is produced (e(n) = y(n)).

The poles of the adaptive OBF filter are estimated using a block-
based matching pursuit algorithm, which is depicted in Figure 2 with
a slightly simplified notation. First, a grid pg of G candidate poles
is defined on the unit disc based on some prior knowledge of the
room acoustic system or some particular desired frequency resolu-
tion. For each pole pair pi ∈ pg (with i = 1, . . . , G), the pair
of intermediate signals κ±f+1,i(n) = [κ+

f+1,i(n), κ
−
f+1,i(n)] is ob-

tained as the (f + 1)-th intermediate signals of an OBF filter built
from the pole set [pA

f ,pi], i.e. by filtering the input u(n) with the

TFs Ψ±i (z) = N±
i (z)Pi(z)

∏f
j=1 Aj(z), where the product cor-

responds to the series of all-pass filters defined by the poles in pA
f

(cfr. Figure 1). Equivalently, κ±f+1,i(n) can be computed by fil-

tering the output of the all-pass series af (n) =
∏f

j=1 Aj(z)u(n)

with pairs of filters with TFs Γ±i (z,pi) = N±
i (z)Pi(z). The vector

κf+1(n) = [κ±f+1,1(n), . . . ,κ
±
f+1,G(n)] of the intermediate sig-

nals computed for all the pole pairs in pg are then collected for Nf

samples and stacked to build the dictionary Df+1, which is a matrix
whose columns d±i are the last Nf samples of the G pairs of interme-
diate signals κ±f+1,i(n). At each block, a pole pair is selected based

on the correlation of the pairs of intermediate signal sequences d±i
with the last Nf samples of the estimation error vector e(n), stacked
to form a matrix Ef , whose column εrf is a vector containing the last
Nf samples of the estimation error signal er(n). The correlation of
each pair of intermediate signal sequences d±i with the εrf for the
r-th channel is computed as

αr
f+1,i =

√
αr
i+

2 + αr
i−

2 =

√
(d+

i

T
εrf )

2 + (d−i
T
εrf )

2. (9)

The pair of intermediate signal sequences in the dictionary having
maximum correlation with the estimation error matrix Ef is selected

according to s = argmaxi

∑R
r=1 α

r
f+1,i and the corresponding
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pole pair ps ∈ pg is added to the active pole set pA
f+1 and in-

cluded in the adaptive OBF filter structure. The linear filter parame-
ters θ̂r±

f+1(n) = [θr+f+1(n), θ
r−
f+1(n)] are set equal to the correlation

coefficients αr
s± = [αr

s+ , α
r
s− ] (with r = 1, . . . , R), normalized

w.r.t. the norm of d±s . In this way, the linear filter parameters are
already close to their optimal value (assuming that the RTF of the
acoustic channels is time-invariant during the estimation), so that a
small value for μ can be used in order to achieve better accuracy
with the LMS algorithm. Finally, the algorithm moves to the next
block (f = f + 1) where another pole pair is estimated from the
last Nf samples of the estimation error signals and of the candidate
(f + 1)-th intermediate signals as described above, until a desired
number of poles Np has been estimated or the MSE falls below a
certain threshold.

4. SIMULATION RESULTS

The simulation results presented here aim to verify that OBF filters
with common poles estimated with the algorithm described above
increase the modeling accuracy compared to FIR filters with the
same number of linear filter parameters. Another aim is to test the
robustness of the estimated sets of common poles to variations of
the RTF. To do so, the poles estimated from training data are fixed
and validated on data related to different source and/or receiver posi-
tions in the room, different from those used during training. Simula-
tions are performed on the SUBRIR database [10], consisting of 24
low-frequency RIRs measured in a rectangular listening room using
a B&K 4939 1/4” microphone and a custom Genelec 1094A sub-
woofer (12-150 Hz, ±3 dB) for 4 source positions xs and 6 micro-
phone positions ym. Each RIR is downsampled to fs = 800Hz and
truncated to Nh = 1600 samples from the direct path component,
selected as its starting point, and normalized in energy.

First, the poles are estimated from the training data. The train-
ing data are obtained from a SIMO room acoustic system, where
the input signal u(n) is a zero mean white noise sequence of length
NpNf (with block length Nf = 2Nh), which is convolved with
R = 6 RIRs, corresponding to 2 source positions and 3 micro-
phone positions, obtaining R different output sequences. There are
V = 120 possible combinations of 2 source and 3 microphone posi-
tions. M = 10 different realizations of the input sequence for each
combination give a training set containing VMR = 7200 input-
output sequences. The BB-OBF-MP algorithm is run on the training
data for each combination and each realization to obtain a set of
Np = 20 poles common to the 6 RIRs included in that specific com-
bination. The pole grid pg used in the BB-OBF-MP algorithm has
G = 3000 poles with 10 different radii distributed logarithmically
from 0.9 to 0.995 and with 300 different angles placed uniformly
between 1Hz and 200Hz. The step size for the estimation is set to
μe = 0.001. The estimated set of poles for each combination and
realization is then kept fixed for validation; two sets of validation
data are considered: set A contains data related to RIRs measured
for the same 2 source positions, but for 3 different microphone po-
sitions, w.r.t. the corresponding training data, so that, for instance,
the poles estimated for the combination C1

t = {x1, x2, y1, y2, y3}
are validated on the data corresponding to the combination C1

A =
{x1, x2, y4, y5, y6} (and repeated for M = 10 input realizations),
while set B contains data related to RIRs measured for 2 different
source positions and 3 different microphone positions, w.r.t. the cor-
responding training data, so that the poles are validated on the com-
bination C1

B = {x3, x4, y4, y5, y6}. Validation is performed using
adaptive OBF filters with step size μv = 0.003 on the validation
sets A and B, and also on the training data for comparison. In ad-

0 1 2 3 4 5 6 7
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time (s)

Δ
h
n
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B
)

Fig. 3. The misadjustment in (10) for adaptive FIR filters on the
training set ( ) and for adaptive OBF filters on the training set ( )
and on the validation set A ( ) and B ( ) for Nθ = 40.

dition, the training data is used to identify the system with adaptive
FIR filters with the same number Nθ of adaptive parameters, using
LMS with the same step size. The linear filter parameters during
validation are all initialized to zero.

The error measure used to compare the performance in the vali-
dation is the misadjustment Δhn averaged over all different combi-
nations, over all realizations and over the 6 RIRs in each combina-
tion, and is defined as

Δhn = 10 log10

[
1

VMR

V∑
v=1

M∑
m=1

R∑
r=1

‖hr − ĥr,n
v,m‖22

‖hr‖22

]
, (10)

with hr indicating the r-th measured target RIR in each combina-
tion and ĥr,n

v,m the approximated RIR of hr obtained using the set of
pole estimated from the training data for the v-th combination and
with the linear filter parameters estimated in the validation at sample
n for the m-th realization of the input sequence. The approximated
RIR ĥr,n

v,m is obtained as a linear combination of the length-Nh im-
pulse responses of the OBFs built from the common poles estimated
in the training, weighted by the linear filter parameters updated at
sample n. The results of the misadjustment for Np = 20 poles
(corresponding to Nθ = 40 linear filter parameters) are shown in
Figure 3. It can be seen that the modeling accuracy is significantly
increased using OBF filters compared to FIR filters with comparable
convergence rate. The convergence rate for adaptive OBF models
seems not to depend on the distance between the true poles and the
poles of the system, since the same convergence rate results from
all data sets. Moreover, common poles estimated on the training
data provide good modeling accuracy when used to model RIRs for
different source-microphone positions, also when the variations of
the RTF are particularly significant (validation data set B). This fact
suggests the possibility of estimating the poles for a finite number
of source-microphone positions within a room in order to obtain a
filter parametrization to be used anywhere in the same room, thus
avoiding cumbersome computations for the adaptation of the poles.

5. CONCLUSIONS AND FUTURE WORK

In this paper, a room acoustic system identification algorithm for
the estimation of the poles of adaptive OBF filters was proposed. A
common set of poles estimated from multichannel data proved to re-
duce significantly the estimation error compared to FIR filters and
to be quite robust to variations in the RTF, suggesting the possibility
of keeping the poles fixed after estimation, thus avoiding adaptation
of the pole position. Future research will focus on a better under-
standing of the common pole parametrization and on moving toward
practical applications of the identification algorithm (e.g. by includ-
ing nonwhite input signals).
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