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Training Design and Channel Estimation in Uplink
Cloud Radio Access Networks

Xinqian Xie, Mugen Peng, Wenbo Wang, and H. Vincent Poor, Fellow, IEEE

Abstract—To decrease the training overhead and improve
the channel estimation accuracy in uplink cloud radio access
networks (C-RANs), a superimposed-segment training design is
proposed. The core idea of the proposal is that each mobile station
superimposes a periodic training sequence on the data signal, and
each remote radio head prepends a separate pilot to the received
signal before forwarding it to the centralized base band unit pool.
Moreover, a complex-exponential basis-expansion-model based
channel estimation algorithm to maximize a posteriori probability
is developed. Simulation results show that the proposed channel
estimation algorithm can effectively decrease the estimation mean
square error and increase the average effective signal-to-noise
ratio (AESNR) in C-RANs.

Index Terms—Channel estimation, cloud radio access networks.

I. INTRODUCTION

I N CLOUD RADIO ACCESS NETWORKS (C-RANs), a
large number of remote radio heads (RRHs) are deployed to

forward received signals from mobile stations (MSs) to a cen-
tralized base band unit (BBU) pool throughwired/wireless back-
haul links for uplink transmission [1]. To suppress the inter-RRH
interference by using cooperative processing techniques at the
BBU pool, channel state information (CSI) of both the radio ac-
cess links (ALs) and wireless backhaul links (BLs) is required
[2]. The superimposed-training scheme can significantly reduce
the overhead and is valid to perform channel estimation for time-
varying environments using the complex-exponential basis-ex-
pansion-model (CE-BEM) [3]. However, straightforward imple-
mentation of superimposed training in C-RANs would degrade
transmission quality due to the fact that superimposing both
AL and BL training sequences on the data signal the effective
signal-to-noise ratio (SNR) [4].
Motivated to reduce the training overhead and enhance the

channel estimation performance at the BBU pool, a super-
imposed-segment training design is proposed in this letter,
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Fig. 1. System model and the superimposed-segment training design.

where superimposed-training is implemented for the AL while
segment-training is applied for the wireless BL. Moreover,
a CE-BEM based maximum a posteriori probability (MAP)
channel estimation algorithm is developed, in which the
basis-expansion-model (BEM) coefficients of the time-varying
AL and the channel fading of the quasi-static wireless BL are
first obtained, after which the time-domain channel samples
of the AL are restored in terms of maximizing the average
effective SNR.

II. SYSTEM MODEL AND TRAINING DESIGN

A C-RAN consisting of one BBU pool and multiple RRHs
is depicted in Fig. 1, where the RRHs operate in half-duplex
mode, and different MSs associated with the same RRU are
allocated with a single subcarrier through the orthogonal fre-
quency division multiplexing access (OFDMA) technique. It
is assumed that MSs move continuously, while RRUs remain
fixed. Thus, the radio channels of ALs would vary during
one transmission block, while those of wireless BLs undergo
quasi-static flat fading. Due to the orthogonality characteristics
of OFDMA for accessing of multiple MSs, we can focus on the
transmission of only a single MS. Let and denote the data
vector and cyclical training sequence transmitted from the MS,
respectively. The training sequence from the RRH is denoted by
. The -th channel fading gain of the time-varying radio AL

is denoted by with mean zero and variance , while the
channel fading gain of the quasi-static flat BL is denoted by
with the complex Gaussian distribution of mean zero and vari-
ance . The transmit power of the MSs and RRHs are denoted
by and , respectively. The noise variances at the RRHs
and the BBU pool are denoted by and , respectively. It is
assumed that the BBU pool acquires the knowledge of , ,
, , , , and .
During each transmission block, the MS transmits a signal

with symbol length of to the RRU, in which the -th entry of
is given by

(1)
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where denotes the -th entry of with M-ary phase shift
keying (MPSK)modulation constrained by , and

represents the -th entry of with whose
period is denoted by . The value of is within .
Without loss of generality, we further assume that is an
integer [3]. The -th observation at the RRH can be written as

(2)

where is additive white Gaussian noise (AWGN) at
the RRH. Then the RRH scales the received signal by

, and inserts prior to the received signal.

The sequence is of length and its -th entry satisfies
. The BBU pool receives two separate signals

given by

(3)

(4)

where ,
and are

AWGN vectors. In order to perform coherent reception and
adopt cooperative processing techniques at the BBU pool, the
knowledge of ’s and should be obtained.

III. CE-BEMBASEDMAP CHANNEL ESTIMATION ALGORITHM

The CE-BEM for time-selective but frequency-flat fading
channels, e.g., Rayleigh fading, given in [5] and [6] is chosen
to model the time-varying AL as

(5)

where the ’s are assumed to satisfy independent complex
Gaussian distributions with having mean zero and variance
. Moreover, the ’s are assumed to remain invariant within

one transmission block, and is satisfied. Sub-
stituting (5) into (3), can be rewritten as

(6)

where is an dimensional

matrix with . By defining
of dimension, we can obtain

(7a)
(7b)

where is an dimensional vector. Left multiplying
by ( yields

(8)

whose -th to -th entries, denoted
by , can be expressed as

(9)

We have

(10)

for with . In [14, pp. 7],
it is mentioned that if the probability density function (PDF)
of a noise process is not mathematically tractable, a reasonable
model to choose is white Gaussian noise. Since the PDF of is
rather complicated, we thus choose the complex Gaussian den-
sity to be the nominal likelihood function of . In this case, the
likelihood function of can be written as

(11)

A. Estimation for ’s and

Defining , the MAP estimation of
gives (12) shown at the bottom of this page, where ,
and are Gaussian density functions. With a given , the
estimate of can be obtained as

(13)

Substituting (13) into (12), the estimate of can be obtained
from

(14)

Note that, only the first term in relates to the phase of
(denoted by ), and thus can be directly estimated by mini-
mizing as

(15)

The estimate of must be either a local minimum of
or at the boundary , which can be obtained from solving

. Unfortunately, a closed-form expression for is

hard to derive since is an ( )th-order polynomial in
, and thus a numerical method such as one dimensional search

is needed to compute the value of . To reduce the complexity

(12)
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of such an approach, an iterative approach is developed whereby
is initialized from

(16)

With the obtained , the ’s can be estimated according to (13)
with in place of . Then, can be further updated by substi-
tuting ’s into (15) as

(17)

B. Restoration for Channel Gains ’s

With ’s obtained, is restored as

(18)

where ’s are real factors. The vector that maximizes the
average effective SNR (AESNR) [7] denoted by is obtained
from

(19)

Define , and denote by and the estimation
error of and , respectively. We can obtain (20), shown at the
bottom of the page. Note that while the last
term in (20) has the order of , and thus we remove the
last term for the high SNR approximation, i.e.,

(21)

Similarly,

(22)

Due to the non-linearity of the MAP estimators (13) and (17), it
is difficult to derive the expressions for the corresponding mean-
square errors (MSEs) and , respectively, in closed form.
Thus, we approximate and as [12, eq. 27, pp. 454]:

(23)

respectively. It is stressed that both and in (23) are the
corresponding MSEs of the asymptotic MAP estimators when
and are sufficiently large.
Substituting (23) into and taking the expectation with re-

spect to , the ’s and the noise terms, we can obtain

Ξ
Ξ

(24)

where (see (25)–(27) at the bottom of the page), and
. On Ξ , the optimization of (19)

transforms to
(28)

Ξ (29)

Clearly, the optimization problem described in (28) constrained
by (29) is concave, and can be directly obtained from the
Lagrange dual function as

Ξ

Ξ
(30)

Substituting (30) back into (24), the optimization problem is
transformed as

Ξ
(31)

(32)

(20)

(25)

Ξ (26)

(27)
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TABLE I
ITERATIVE CHANNEL ESTIMATION ALGORITHM

whose solution
Ξ

, which leads to

Ξ
Ξ

(33)

The proposed channel estimation algorithm is summarized in
Table I, and the following proposition is given to demonstrate
the effectiveness of the proposed algorithm:
Proposition 1: The iterative channel estimation algorithm is

convergent, and it achieves a lower MSE than the maximum
likelihood (ML) method does.

Proof: Each iteration consists of ( ) steps. Denote the
-th entry of by , and note that the updated estimate of ,
denoted by , satisfies . This indicates that

strictly increases after each step as well as after one round
of iteration. Thus, it is concluded that the iterative algorithm is
convergent.
By substituting (4) and (9) into (17), the MAP estimate of

with a given is shown at the bottom of the page, whose MSE
is calculated as

(34)

Similarly, the MSE of ML estimation for is calculated as

(35)

Clearly, always holds, and it can be also shown that
is satisfied similarly.

IV. NUMERICAL RESULTS

Numerical results are provided to evaluate the performance
of the proposal. The AL channel and BL channel are
generated from the spatial channel model (SCM) in 3GPP TR
25.996 [9]. The parameters are set as and .
We assume binary-phase-shift-keying (BPSK) modulation for

, while is selected as the 2nd column of the selected
discrete Fourier transform (DFT) matrix and is se-

lected as the 3rd column of the DFTmatrix. The transmit

Fig. 2. Average MSE versus SNR for different estimation methods.

Fig. 3. AESNR versus SNR for different channel restoring methods.

powers and are set to be equal, and the noise variances
and are set to be of unit value. Thus the SNR is equal to .
In Fig. 2, the average MSEs for C-MAP estimation are

compared with that for ML estimation. It is observed that the
proposed C-MAP estimation outperforms the traditional ML
method since C-MAP achieves lower MSEs over both AL and
BL channels than ML. Moreover, it is seen that the MSE of
the AL channel for the ML method is not convergent. This
is because random generation of can result in singularity,
e.g., , leading to for the ML method, while
the proposed C-MAP algorithm is robust at the singularity. In
Fig. 3, we evaluate the AESNR performance for the optimal
weighted approach (OWA) to channel restoration. It is seen
that OWA obtains higher AESNRs than the baseline (restoring
according to CE-BEM) does, especially in the low SNR region.

V. CONCLUSIONS

A superimposed-segment training design has been proposed
to decrease training overhead and enhance channel estimation
accuracy in uplink C-RANs. Simulation results have demon-
strated that the proposed algorithm lowers the estimation MSE
and increases the AESNR.

This paper previously published in IEEE Signal Processing Letters



1064 IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 8, AUGUST 2015

REFERENCES
[1] Y. Zhou and W. Yu, “Optimized backhaul compression for uplink

cloud radio access network,” IEEE J. Sel. Areas Commun., vol. 32,
no. 6, pp. 1295–1307, Jun. 2014.

[2] S. Park et al., “Robust layered transmission and compression for dis-
tributed uplink reception in cloud radio access networks,” IEEE Trans.
Veh. Technol., vol. 63, no. 1, pp. 204–216, Jan. 2014.

[3] G. Giannakis and C. Tepedelenlioglu, “Basis expansion models and
diversity techniques for blind identification and equalization of time-
varying channels,” in Proc. IEEE, Nov. 1998, vol. 86, pp. 1969–986.

[4] G. Dou, C. He, C. Li, and J. Gao, “A weighted first-order statistical
method for time-varying channel and DC-offset estimation using su-
perimposed training,” IEEECommun. Lett., vol. 17, no. 5, pp. 852–855,
May 2013.

[5] X. Ma and G. Giannakis, “Maximum-diversity transmissions over
doubly-selective wireless channels,” IEEE Trans. Inf. Theory, vol. 49,
pp. 1832–1840, Jul. 2003.

[6] G. Wang et al., “Channel estimation and training design for two-way
relay networks in time-selective fading environments,” IEEE Trans.
Wireless Commun., vol. 10, no. 8, pp. 2681–2691, Aug. 2011.

[7] F. Gao, R. Zhang, and Y. Liang, “Optimal channel estimation and
training design for two-way relay networks,” IEEE Trans. Commun.,
vol. 57, no. 10, pp. 3024–3033, Oct. 2009.

[8] X. Xie et al., “Maximum a posteriori based channel estimation strategy
for two-way relaying channels,” IEEE Trans. Wireless Commun., vol.
13, no. 1, pp. 450–463, Jan. 2014.

[9] “Spatial channel model for multiple input multiple output simulations,”
3GPP TR 25.996, release 9 Dec. 2009.

[10] S. M. Kay, “Fundamentals of statistical signal processing,” in Estima-
tion Theory. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1993,
vol. I.

[11] A. Goldsmith, Wireless Communications. Cambridge, U.K.: Cam-
bridge Univ. Press, 2005.

This paper previously published in IEEE Signal Processing Letters


