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Distributed Compressed Estimation Based on
Compressive Sensing

Songcen Xu, Rodrigo C. de Lamare, Senior Member, IEEE, and H. Vincent Poor, Fellow, IEEE

Abstract—This letter proposes a novel distributed compressed
estimation scheme for sparse signals and systems based on com-
pressive sensing techniques. The proposed scheme consists of
compression and decompression modules inspired by compressive
sensing to perform distributed compressed estimation. A design
procedure is also presented and an algorithm is developed to
optimize measurement matrices, which can further improve the
performance of the proposed distributed compressed estimation
scheme. Simulations for a wireless sensor network illustrate the
advantages of the proposed scheme and algorithm in terms of
convergence rate and mean square error performance.

Index Terms—Compressive sensing, distributed compressed es-
timation, measurement matrix optimization, sensor networks.

I. INTRODUCTION

D ISTRIBUTED signal processing algorithms are of great
importance for statistical inference in wireless networks

and applications such as wireless sensor networks (WSNs) [1],
[2], [3], [4]. Distributed processing techniques deal with the ex-
traction of information from data collected at nodes that are dis-
tributed over a geographic area [1]. In this context, for each node
a set of neighbor nodes collect and process their local informa-
tion, and transmit their estimates to a specific node. Then, each
specific node combines the collected information together with
its local estimate to generate improved estimates.
In many scenarios, the unknown parameter vector to be es-

timated can be sparse and contain only a few nonzero coeffi-
cients. Many algorithms have been developed in the literature
for sparse signal estimation [5], [6], [7], [8], [9], [10], [11], [12].
However, these techniques are designed to take into account the
full dimension of the observed data, which increases the com-
putational cost, slows down the convergence rate and degrades
mean square error (MSE) performance.
Compressive sensing (CS) [13], [14] has recently received

considerable attention and been successfully applied to diverse
fields, e.g., image processing [15], wireless communications
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[16] and MIMO radar [17]. The theory of CS states that an
–sparse signal of length can be recovered exactly with

high probability from measurements. Mathemati-
cally, the vector with dimension that carries sufficient
information about ( ) can be obtained via a linear
model [14]

(1)
where is the measurement matrix.
The application of CS toWSNs has been recently investigated

in [16], [18], [19], [20]. A compressive wireless sensing scheme
was developed in [16] to save energy and bandwidth, where CS
is only employed in the transmit layer. In [18], a greedy algo-
rithm called precognition matching pursuit was developed for
CS and used at sensors and the fusion center to achieve fast re-
construction. However, the sensors are assumed to capture the
target signal perfectly with only measurement noise. The work
of [19] introduced a theory for distributed CS based on jointly
sparse signal recovery. However, in [19] CS techniques are only
applied to the transmit layer, whereas distributed CS in the esti-
mation layer has not been widely investigated. A sparse model
that allows the use of CS for the online recovery of large data sets
in WSNs was proposed in [20], but it assumes that the sensor
measurements could be gathered directly, without an estima-
tion procedure. In summary, prior work has focused on signal
reconstruction algorithms in a distributed manner but has not
considered both compressed transmit strategies and estimation
techniques.
In this work, we focus on the design of an approach that ex-

ploits lower dimensions, reduces the required bandwidth, and
improves the convergence rate and the MSE performance. In-
spired by CS, we introduce a scheme that incorporates com-
pression and decompression modules into the distributed esti-
mation procedure. In the compression module, we compress the
unknown parameter into a lower dimension. As a result, the
estimation procedure is performed in a compressed dimension.
After the estimation procedure is completed, the decompression
module recovers the compressed estimator into its original di-
mension using an orthogonal matching pursuit (OMP) algorithm
[21], [22], [23]. We also present a design procedure and de-
velop an algorithm to optimize themeasurement matrices, which
can further improve the performance of the proposed scheme.
Specifically, we derive an adaptive stochastic gradient recursion
to update the measurement matrix. Simulation results illustrate
the performance of the proposed scheme and algorithm against
existing techniques.
This paper is organized as follows. Section II describes

the system model. In Section III, the proposed distributed
compressed estimation scheme is introduced. The proposed
measurement matrix optimization is illustrated in Section IV.
Simulation results are provided in Section V. Finally, we con-
clude the paper in Section VI.
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Notation: We use boldface uppercase letters to denote ma-
trices and boldface lowercase letters to denote vectors. We use

to denote the inverse operator, for conjugate transpo-
sition and for complex conjugate.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A wireless sensor network (WSN) with N nodes, which have
limited processing capabilities, is considered with a partially
connected topology. A diffusion protocol is employed although
other strategies, such as incremental [24] and consensus [25]
could also be used. A partially connected network means that
nodes can exchange information only with their neighbors as de-
termined by the connectivity topology. In contrast, a fully con-
nected network means that, data broadcast by a node can be cap-
tured by all other nodes in the network [26]. At every time instant
, the sensor at each node takes a scalar measurement ac-
cording to

(2)

where is the input signal vector with zero mean and
variance , is the noise at each node with zero mean and
variance . From (2), we can see that the measurements for
all nodes are related to an unknown parameter vector with
size that should be estimated by the network. We assume
that is a sparse vector with non-zero coefficients.
The aim of such a network is to compute an estimate of in a
distributed fashion, which minimizes the cost function

(3)

where denotes expectation. Distributed estimation of
is appealing because it provides robustness against noisy mea-
surements and improved performance as reported in [1], [24],
[25]. To solve this problem, a cost-effective technique is the
adapt–then–combine (ATC) diffusion strategy [1]

(4)

where indicates the set of neighbors for node , is the
local estimator of node , denotes the cardinality of
and is the combination coefficient, which is calculated with
respect to the Metropolis rule

(5)

and should satisfy

(6)

Existing distributed sparsity-aware estimation strategies, e.g.,
[5], [6], [7], are designed using the full dimension signal space,
which reduces the convergence rate and degrades the MSE per-
formance. In order to improve performance, reduce the required
bandwidth and optimize the distributed processing, we incor-
porate at each node of the WSN the proposed distributed com-
pressed estimation scheme based on CS techniques, together
with a measurement matrix optimization algorithm.

Fig. 1. Proposed compressive sensing modules.

Fig. 2. Proposed DCE Scheme.

III. PROPOSED DISTRIBUTED COMPRESSED
ESTIMATION SCHEME

In this section, we detail the proposed distributed compressed
estimation (DCE) scheme based on CS. The proposed scheme,
depicted in Fig. 1, employs compression and decompression
modules inspired by CS techniques to perform distributed com-
pressed estimation. In the proposed scheme, at each node, the
sensor first observes the vector , then with the help
of the measurement matrix obtains the compressed ver-
sion , and performs the estimation of in the compressed
domain. In other words, the proposed scheme estimates the
vector instead of the vector , where and
the –dimensional quantities are designated with an overbar. At
each node, a decompression module employs a measure-
ment matrix and a reconstruction algorithm to compute an
estimate of . One advantage for the DCE scheme is that fewer
parameters need to be transmitted between neighbour nodes.
We start the description of the proposed DCE scheme with the

scalar measurement given by

(7)

where and is the input signal vector.
This operation is depicted in Fig. 1 as the compression module.
Fig. 2 illustrates the proposed DCE scheme. The scheme can

be divided into three steps:
• Adaptation
In the adaptation step, at each time instant ,
each node , generates a local compressed
estimator through

(8)

where and .
• Information exchange
Given the network topology structure, only the local com-
pressed estimator will be transmitted between node
and all its neighbor nodes. The measurement matrix

will be kept locally.
This paper previously published in IEEE Signal Processing Letters
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TABLE I
THE PROPOSED DCE SCHEME

• Combination
At each time instant , the combination step
starts after the information exchange is finished. Each
node will combine the local compressed estimators from
its neighbor nodes and itself through

(9)

to compute the updated compressed estimator .
After the final iteration , each node will employ the OMP

reconstruction strategy to generate the decompressed estimator
. Other reconstruction algorithms can also be used. The de-

compression module described in Fig. 1 illustrates the details. In
summary, during the DCE procedure, only the local compressed
estimator will be transmitted over the network resulting in
a reduction of the number of parameters to be transmitted from

to . The proposed DCE scheme is given in Table I.
The computational complexity of the proposed DCE scheme

is , where is the number of nodes in theWSN
and is the number of time instants. The distributed NLMS
algorithm has a complexity , while the complexity
of the sparse diffusion NLMS algorithm [6] is .
For the distributed compressive sensing algorithm of [18], the
computational complexity is . In the pro-
posed DCE scheme, only the local compressed estimator
with parameters will be transmitted through the network,
which means the transmission requirement is greatly reduced as
compared with the standard schemes that transmit with

parameters.

IV. MEASUREMENT MATRIX OPTIMIZATION

To further improve the performance of the proposed DCE
scheme, an optimization algorithm for the design of the mea-
surement matrix , which is now time–variant, is devel-
oped here. Unlike prior work [17], [27], this optimization is dis-
tributed and adaptive. Let us consider the cost function

(10)

where . To minimize the cost function, we
need to compute the gradient of with respect to and
equate it to a null vector, i.e., . As a result, only the

first three terms in (10) need to be considered. Taking the first
three terms of (10) we arrive at

(11)
Because the random variable is statistically independent
from the other parameters and has zero mean, (11) can be further
simplified as

(12)
Then, we have

(13)

where , and
. Equating (13) to a null vector, we obtain

(14)
(15)

The expression in (15) cannot be solved in closed–form because
is an unknown parameter. As a result, we employ the pre-

vious estimate to replace . However, and
depend on each other, thus, it is necessary to iterate (15) with
an initial guess to obtain a solution. In particular, we replace the
expected values with instantaneous values. Starting from (13),
we use instantaneous estimates to compute

(16)
(17)

and
(18)

According to the method of steepest descent [28], the updated
parameters of the measurement matrix at time are
computed by using the simple recursive relation

(19)
where is the step size and is the unknown parameter
vector that must be estimated by the network. Then, the param-
eter vector is used to reconstruct the estimate of as
follows

(20)
where the operator denotes the OMP reconstruction al-
gorithm. Note that other reconstruction algorithms could also be
employed. Replacing by , we arrive at the expression
for updating the measurement matrix described by

(21)
This paper previously published in IEEE Signal Processing Letters
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Fig. 3. MSE performance against time.

The computational complexity of the proposed scheme with
measurement matrix optimization is .

V. SIMULATIONS

We assess the proposed DCE scheme and the measurement
matrix optimization algorithm in a WSN application, where a
partially connected network with nodes is considered.
We compare the proposed DCE scheme with uncompressed
schemes, including the distributed NLMS (dNLMS) algorithm
(normalized version of [1]), sparse diffusion NLMS algorithm
[6], sparsity-promoting adaptive algorithm [8], and the dis-
tributed compressive sensing algorithm [18], in terms of MSE
performance. Note that other metrics such as mean-square devi-
ation (MSD) could be used but result in the same performance
hierarchy between the analyzed algorithms.
The input signal is generated as

and , where
is a correlation coefficient and is a white noise process

with variance , to ensure the variance of
is . The compressed input signal is obtained

by . The measurement matrix is an i.i.d.
Gaussian random matrix that is kept constant. The noise sam-
ples are modeled as complex Gaussian noise with variance

. The unknown parameter vector has
sparsity , where , and . The step size

for the distributed NLMS, distributed compressive sensing,
sparse diffusion LMS and the proposed DCE algorithms is 0.45.
The parameter that controls the shrinkage in [6] is set to 0.001.
For [8], the number of hyperslabs equals 55 and the width of
the hyperslabs is 0.01.
Fig. 3 illustrates the comparison between the DCE scheme

with other existing algorithms, without the measurement matrix
optimization. It is clear that, when compared with the existing
algorithms, the DCE scheme has a significantly faster conver-
gence rate and a better MSE performance. These advantages
consist in two features: the compressed dimension brought by
the proposed scheme and CS being implemented in the estima-
tion layer. As a result, the number of parameters for transmission
in the network is significantly reduced.
In the second scenario, we employ the measurement matrix

optimization algorithm to in the DCE scheme. The parameter
for the measurement matrix optimization algorithm is set to

0.08 and all other parameters remain the same as in the previous
scenario. In Fig. 4, we observe that with the help of the measure-

Fig. 4. MSE performance against time with measurement matrix optimization.

Fig. 5. MSE performance against reduced dimension for different levels of
resolution in bits per coefficient.

ment matrix optimization algorithm, DCE can achieve a faster
convergence when compared with DCE without the measure-
ment matrix optimization.
In the third scenario, we compare the DCE scheme with the

distributed NLMS algorithm with different levels of resolution
in bits per coefficient, reduced dimension and sparsity level
. The x-axis stands for the reduced dimension and their cor-

responding sparsity level can be found in Fig. 5. In Fig. 5, it
is clear that with the increase of the sparsity level the MSE
performance degrades. In addition, the MSE performance will
increase when the transmission has more bits per coefficient.
For the DCE scheme, the total number of bits required for trans-
mission is times the number of bits per coefficient, whereas
for the distributed NLMS algorithm it is times the number
of bits per coefficient. A certain level of redundancy is required
between the sparsity level and the reduced dimension due to the
error introduced by the estimation procedure.

VI. CONCLUSIONS
We have proposed a novel DCE scheme and algorithms for

sparse signals and systems based on CS techniques and a mea-
surement matrix optimization. In the DCE scheme, the estima-
tion procedure is performed in a compressed dimension. The re-
sults for a WSN application show that the DCE scheme outper-
forms existing strategies in terms of convergence rate, reduced
bandwidth and MSE performance.
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