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Abstract—This letter introduces a design and proof-of-concept
implementation of Gabor filters based on stochastic computation
for area-efficient hardware. The Gabor filter exhibits a powerful
image feature extraction capability, but it requires significant com-
putational power. Using stochastic computation, a sine function
used in the Gabor filter is approximated by exploiting several sto-
chastic tanh functions designed based on a state machine. A sto-
chastic Gabor filter realized using the stochastic sine shaper and
a stochastic exponential function is simulated and compared with
the original Gabor filter that shows almost equivalent behaviour
at various frequencies and variance. A root-mean-square error of
0.043 at most is observed. In order to reduce long latency due to
stochastic computation, 68 parallel stochastic Gabor filters are im-
plemented in Silterra m CMOS technology. As a result, the
proposed Gabor filters achieve a 78% area reduction compared
with a conventional Gabor filter while maintaining the comparable
speed.

Index Terms—Digital circuit implementation, stochastic com-
puting.

I. INTRODUCTION

T HE Gabor filter [1] is a powerful tool that can extract ori-
ented bars and edges of an image with a similar behaviour

to the human visual system [2]–[4]. The Gabor filter designed
using amultiplication of sin/cos function by a Gaussian function
is often used for various image processing and computer vision
applications, such as face recognition [5] and vehicle verifica-
tion [6], [7].
However, real-time implementation of the Gabor filter

is challenging, due to the complexity of the Gaussian and
sine function implementation. Several approaches have been
proposed, based decomposition algorithms, cellular neural
networks or COordinate Rotation DIgital Computer (CORDIC)
[8]–[10]. Digital hardware implementations have been shown
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to achieve high-speed, at the cost of large area due to the com-
plex arithmetic function implementations. On the other hand,
approaches using analog or mixed-signal circuit realizations
of the Gaussian and sine functions can result in area-efficient
hardware implementation [11]–[14]. However, analog imple-
mentations do not scale well to more advanced CMOS process
nodes and under process variations.
In this letter we provide a design and proof-of-concept

implementation of Gabor filters using stochastic computation
[15], [16]. Stochastic computation is a purely-digital imple-
mentation technique that represents data as streams of random
bits. Like analog circuits, stochastic computation can perform
complex functions, such as the non-linear exponentiation
function, with simple, area-efficient hardware, however it
enjoys the scalability of digital circuits. To the best of our
knowledge, this is the first hardware algorithm and architec-
ture of a sine function and Gabor filter based on stochastic
computation.

II. STOCHASTIC SINE SHAPER

Stochastic computing was first introduced in the 1960 s [15].
There has recently been a revival of interest in this technique and
stochastic implementations have been demonstrated for several
applications, such as LDPC decoding [17]–[20] and image pro-
cessing [21]–[23]. Stochastic computing represents information
by sequences of random bits. Information is carried by the fre-
quency of ones in a sequence. The representation is not unique;
for example different sequences such as and ,
represent the same information.
There are two mappings commonly used between the fre-

quency of ones in a sequence and the represented information.
For a sequence of bits , denote the probability of observing
a ‘1’ to be . In unipolar coding, the repre-
sented value is , . In bipolar coding, the
represented value is , . In this
letter, the bipolar format is used. Fig. 1(a) shows a bipolar sto-
chastic multiplier, which is simply a two-input XNOR gate [16].
The stochastic bit streams are generated using a digital-to-sto-
chastic converter shown in Fig. 1(b), where the random number
generator is often realized using a linear-feedback shift register.
The input variable, , is compared with a random number that
generates a stochastic bit stream.
Stochastic computing, as originally proposed, uses tens

or hundreds of clock cycles to perform an operation on bit
sequences. However recent work has resulted in several sto-
chastic hardware implementations achieve similar speed to
conventional digital implementations by reducing the number
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Fig. 1. Stochastic computation: (a) bipolar stochastic multiplier, and (b) dig-
ital-to-stochastic converter.

Fig. 2. Stochastic tanh function: (a) block diagram and (b) state transition di-
agram.

of required clock cycles, and maintain the same functionality
[20], [22].
To implement a Gabor filter, we need to find efficient imple-

mentation of Gaussian and sine functions [2]. In this section, a
sine shaper based on stochastic computation is presented and in
the next section, the exponential function is considered. Inspired
by the analog implementation of a sine shaper in [24], we can
approximate the sine function with several tanh functions as:

(1)

where is the input variable, is a shape-fitting constant, and
is a constant that determines the cycle length of the sine
The tanh function can be approximated by a bipolar stochastic

circuit that implements the function [16], [25]:

(2)

and is implemented using a state machine with states as
shown in Fig. 2 (see detail in [16]). The hardware representation
of the Stanh function is a -bit up/down counter. Using
(1) and (2), the sine function is described as follows:

(3)

where .
The summation is realized using a scaled addition [16] and is

described as follows:

(4)

Fig. 3. Block diagram of the proposed stochastic sine shaper, where is 1/4.

where and are input variables, is an output variable, and
is a probability of selecting as the output. Using (3) and

(4), the sine function is described as follows:

(5)

Now, we define the proposed stochastic sine shaper, Ssin( , ),
that is described as follows:

(6)

where . Note that a stochastic cos shaper can be
also designed by replacing to in
equation (6).
Fig. 3 shows a block diagram of the proposed stochastic sine

shaper, where . The value of is determined
using the scaled addition realized using a multiplexor (see de-
tail in [16]). The three Stanh function blocks are implemented
with ranging from to 1. The Stanh function block is
realized using a 16-state finite-state-machine implemented as
a 4-bit up/down counter. The output of one of three blocks
changes depending on as each Stanh function performs in a
different region of . The outputs of the other two blocks are
fixed to or 1 that determines the sign of the output of the
stochastic sine shaper. Hence, the summation of the outputs
of the three Stanh functions can be simply realized using a
three-input XNOR gate. Note that the summation is realized
using an XNOR gate when is odd and it is realized using
an XOR gate when even.
Fig. 4 shows simulation results of the original sine function

and the proposed stochastic sine shaper, where the curve-fitting
variable, , is set to 0.85. The simulation results are obtained
using MATLAB. The frequency of the stochastic sine shaper
is controlled by in the Stanh function. The simulation results
show that the stochastic sine shaper generates almost the same
value of the original sine function. A RMS error between the
original and the stochastic sine functions is summaized as a
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Fig. 4. Simulation results of the proposed stochastic sine shaper, where
is 0.85, with the original sine function: (a) Ssin(1/7,x), (b) Ssin(2/11,x) and
(c) RMS error vs. frequency of sine function.

function of the frequency in Fig. 4(c). The RMS error at 5.5 Hz
is the worst value because the sine wave of the proposed sine
shaper is not generated at the edges as shown in Fig. 4(b). This
situation occurs when ( ) is more than 0.5. However,
the value differences at the edges are diminished by a Gaussian
function of a Gabor filter.

III. STOCHASTIC GABOR FILTER
A one-dimensional sine- (or odd-) phase Gabor-filter func-

tion is a sine function multiplied by the Gaussian function [2]
described as follows:

(7)

where is the carrier frequency for which this filter gives the
greatest output and is the spread of the Gaussian function.
Stochastic implementations of the exponential function are

presented in [16], [25] and like the tanh function, are realized
using a state machine as shown in Fig. 5. The input signal, ,
is encoded in the bipolar format and the output signal, , is
encoded in the unipolar format. is a positive integer with

, where is the number of states in the stochastic
exponential function. The stochastic exponential function is ap-
proximated as follows:

(8)

To match the degrees of two exponential functions in equa-
tions (7) and (8), the input signal, , with a scaling constant,
, is squared and is then used in the SExp function as follows:

(9)

Fig. 5. Stochastic exponential function: (a) block diagram and (b) state transi-
tion diagram.

Fig. 6. Block diagram of the proposed stochastic Gabor filter.

As is encoded using the unipolar format, the coding format of
is converted from unipolar to bipolar for the stochastic sine

shaper realized using bipolar coding. in the bipolar format is
described as follows:

(10)

Using equations (5), (6) and (10), the Gabor filter is approx-
imated as follows:

(11)

Fig. 6 shows a block diagram of the proposed stochastic Gabor
filter. Both input signal, , and output signal, , are encoded
using the bipolar format. is scaled by and is then squared
using a stochastic squaring circuit presented in [16]. The format
of the output of the SExp function is converted from unipolar to
bipolar using a unipolar-to-bipolar converter realized using the
scaled addition. Simultaneously, the Ssin function is performed
with . At the end, is generated using a three-
input multiplication realized by the three-input XOR gate.
Fig. 7(a) and (b) show simulated results of the original and

the proposed stochastic Gabor filters at different frequencies
and variances, where is 0.9 and is 64. The simulation
results are obtained using MATLAB. can be selected to de-
termine in the stochastic exponential function while main-
taining the same . The simulation results show that the sto-
chastic Gabor filter approximates the original Gabor filter. The
RMS errors are 0.043 in Fig. 7(a) and 0.040 in Fig. 7(b) when

is 1. Fig. 7(c) summarizes a relationship between RMS er-
rors and when is 1.04. The simulation results show that
large and achieve small RMS errors.
Table I shows performance comparisons of Gabor filters. The

proposed Gabor filter is designed based on parameters used in
This paper previously published in IEEE Signal Processing Letters
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Fig. 7. Simulation results of the original and the proposed stochastic Gabor
filters, where is 0.9: (a) , and , (b) ,

, and , and (c) RMS errors vs. when is 1.04.

TABLE I
PERFORMANCE COMPARISONS IN ASIC DESIGN

Fig. 7(b). In addition, 68 parallel stochastic Gabor filters are
designed to reduce the long latency due to stochastic compu-
tation. The proposed Gabor filters are synthesized using Syn-
opsys Design Compiler in Silterra m CMOS technology,
where the number of clock cycles that is equivalent to the sto-
chastic bit length is 10,000. The number 10,000 was chosen just
for demonstration purposes that exhibit almost the same values
as the original Gabor filter. Future work will explore the min-
imizing the number of clock cycles using several useful tech-
niques for stochastic computation presented in [20], [22]. In re-
lated work, [9] realizes a high-speed Gabor filtering using large
number of multipliers and memories, but it lacks the flexibility
of local frequency and orientation of an image and the kernel
size is limited to . In [10], a conventional CORDIC-based

Fig. 8. Example of the spatial frequency and the standard deviation of the sto-
chastic Gabor filter exploited in image processing. They have two degrees of
freedom: and in equation (11), and a pixel length, , assigned to to 1
of an input signal in stochastic computation, where is odd.

Gabor filter is designed with small area while realizing kernel
sizes and the flexibility, where the conventional filter is two-di-
mentional. As the proposed Gabor filter presented in this paper
is one-dimentional. the area overhead from 1-D to 2-D is es-
timated. Suppose the area ovehead is negligibly small for the
performance comparison as the proposed 1-D Gabor filter can
be extended to the 2-D Gabor filter by adding two scaled ad-
ditions and a squaring circuit. As a result, the 68 parallel sto-
chastic Gabor filters achieve a 78% area reduction while main-
taining the comparable delay time compared with the conven-
tional Gabor filter.
Fig. 8 shows an example of the spatial frequency and the

standard deviation of the stochastic Gabor filter. The spatial
frequency is defined as the number of light and dark regions
imaged within a given distance. In the stochastic Gabor filter,
different lengths of pixels of an image can be assigned to
to 1 of an input signal, . Suppose that the stochastic Gabor
filter is applied to pixels of an image, where is odd. The
spatial frequency is and the standard deviation
is . As a conclusion, the spatial frequency and
the standard deviation of the stochastic Gabor filter exploited
in image processing have two degrees of freedom: and in
equation (11), and a pixel length assigned to to 1 of an input
signal in stochastic computation.

IV. CONCLUSION

In this letter, the Gabor filter based on stochastic computation
has been proposed for area-efficient hardware implementation.
A stochastic sine shaper is approximated by using several sto-
chastic tanh functions designed based on a state machine, where
the state machine is simply realized using an up/down counter
in hardware. The stochastic Gabor filter realized using the sto-
chastic sine shaper and the exponential function is simulated
and compared with the original Gabor filter that shows almost
equivalent behaviours at different frequencies and variances are
generated, where the RMS error of 0.043 at most is observed.
The proposed filter implemented in Silterra m CMOS
technology achieves a 78% area reduction compared with the
conventional Gabor filter based on CORDIC while maintaining
the comparable speed.
In future work, the stochastic Gabor filter will be extended to

a two-dimensional Gabor filter for extracting oriented bars and
edges of an image. In addition, the stochastic sine shaper would
be useful to implement other algorithms that require a sinusoidal
wave in hardware.
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