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Musical Onset Detection Using Constrained
Linear Reconstruction

Che-Yuan Liang, Li Su, Member, IEEE, and Yi-Hsuan Yang, Member, IEEE

Abstract—This letter presents a multi-frame extension of the
well-known spectral flux method for unsupervised musical onset
detection. Instead of comparing only the spectral content of two
frames, the proposed method takes into account a wider temporal
context to evaluate the dissimilarity between a given frame and its
previous frames. More specifically, the dissimilarity is measured
by using the previous frames to obtain a linear reconstruction
of the given frame, and then calculating the rectified, -norm
reconstruction error. Evaluation on a dataset comprising 2,169
onset events of 12 instruments shows that this simple idea works
fairly well. When a non-negativity constraint is imposed in the
linear reconstruction, the proposed method can outperform the
state-of-the-art unsupervised method SuperFlux by 2.9% in
F-score. Moreover, the proposed method is particularly effective
for instruments with soft onsets, such as violin, cello, and ney. The
proposed method is efficient, easy to implement, and is applicable
to scenarios of online onset detection.

Index Terms—Exemplar, linear reconstruction, musical onset.

I. INTRODUCTION

O NSET detection is the process of locating the starting
points of musically relevant events in a music signal

[1]–[4]. Onset detection is a fundamental task in music in-
formation retrieval, with numerous applications such as note
segmentation [5], [6], automatic music transcription [7], beat
tracking [8], and interactive musical accompaniment [9],
amongst others. The main challenge of musical onset detection
is to build a robust algorithm that can deal with all types of
variability found in music, encompassing different instruments,
playing techniques, music styles, and the presence of concur-
ring notes [3]. In consequence, despite that great progress have
been made in recent years, musical onset detection remains an
active area of academic research [10]–[20].
Many algorithms have been proposed in the literature and

evaluated in the Audio Onset Detection task of the annualMusic
Information Retrieval Evaluation eXchange (MIREX) [21], in-
cluding unsupervised and supervised methods. Up to date the
state-of-the-art methods are based on the recurrent neural net-
works (RNN) [15]–[17], which is a supervised learning algo-

Manuscript received March 04, 2015; revised June 12, 2015; accepted July
28, 2015. Date of publication August 11, 2015; date of current version August
13, 2015. This work was supported by the Academia Sinica Career Develop-
ment Program under Grant 102-CDA-M09. The associate editor coordinating
the review of this manuscript was Dr. Zhu Liu.
The authors are with the Research Center for Information Technology Innova-

tion, Academia Sinica, Taipei 11564, Taiwan (e-mail: mister2dot4@gmail.com;
lisu@citi.sinica.edu.tw; yang@citi.sinica.edu.tw).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/LSP.2015.2466447

rithm. Being different from this, the focus of this paper is on
unsupervised algorithms, which do not require labeled data. Our
specific goal is to develop a new way to compute the onset de-
tection function (ODF), a time series that ideally exhibits sharp
peaks at onset times, using signal processing techniques. Given
the ODF, it is assumed that one can apply peak pickingmethods
to identify the onsets [1]–[3].
Among the various kinds of unsupervised onset detection

methods, the most popular and widely-investigated ones might
be the spectral flux (SF) methods, which formulate the ODF
as a distance between successive short-time spectral features
[1], [2]. For example, Duxbury et al. [22] proposed to take the
-norm on the rectified difference of the magnitude Fourier

spectra between the current frame and the previous one, taking
into account only the frequencies where there is an increase in
energy so as to emphasize onsets rather than offsets. Recently,
Böck and Widmer [13] proposed an improved variant that uses
a maximum filter on the frequency axis to suppress vibrato (i.e.
a quasi-periodic variation in pitch [23]), and formulates ODF
as the rectified difference between the pre-processed (i.e. fil-
tered) spectra between the current frame and a previous frame
that is frames apart. As the overlap of the two frames under
comparison is smaller, the peaks can be sharper in the resulting
ODF. This SuperFlux method effectively reduces the number
of false positives originating from vibrato and performs well in
MIREX 2013 and 2014 [15].
This letter extends the SFmethod by taking into account more

temporal information while formulating the ODF. Specifically,
while the SF method measures the “audio novelty” (i.e. value in
the ODF) [1] of a given frame by comparing it with one of its
previous frames, the proposed method measures the audio nov-
elty by the reconstruction error while we use the linear combi-
nation of a collection of the previous frames to approximate the
given frame. In other words, we assume that an onset event is
the time instance when the current frame cannot be easily pre-
dicted by its previous frames. In this way, the computation of
the ODF becomes a convex optimization problem, where addi-
tional constraints, such as the sparsity or non-negativity of the
combination coefficients, can be added. We refer to this as a
linear reconstruction (LR) method.
Ideas of usingmultiple frames in onset detection can be found

in existing methods such as high-order linear predictive mod-
eling [24]–[26] or bidirectional long short-term memory RNN
[10]. The proposed method differs from the prior arts in two
ways. First, we use all components as a whole spectral vector
for linear reconstruction, while the prior arts perform linear pre-
diction along specific bands of one-dimensional time samples
independently and then accumulate the band-wise residual as
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Fig. 1. The flowcharts of (a) the state-of-the-art SuperFlux method [15] and (b) the proposed linear reconstruction method for musical onset detection.

the total prediction error. Second, the LR method is optimiza-
tion-based and therefore we propose and compare four pos-
sible implementations for musical onset detection, which has
not been done elsewhere.
Through empirical evaluations, we show that LR can out-

perform SuperFlux when non-negativity constraint is imposed.
Moreover, due to the longer temporal context involved, we find
that the proposed LR method is in particular effective for soft-
onset instruments (e.g. bowed string instruments) that exhibit
rich vibrato and soft onsets. Due to the long attack phase with
a slow rise in energy, such soft onsets can easily lead to false
negatives for existing methods.

II. METHOD

The proposed method and SuperFlux only differ in the way
the ODF is calculated. Other than that, the two methods use
the same pre-processing and peak picking algorithms. We show
their flowcharts in Fig. 1 and present the details below. In what
follows, we use bold upper case and bold lower case to represent
matrices and column vectors, respectively.

A. Pre-processing

Given a music signal sampled at 44,100 Hz, we first use
the short-time Fourier transform to compute the magnitude
spectra with a frame length of 2,048 points and a frame rate
of 200 frames-per-second. Following [15], the magnitude
Fourier spectra are then processed by 141 triangular filter banks
ranging from 30 Hz to 17,000 Hz with the interval of 24 bands
per octave. The resulting 141-dimensional feature vector per
frame is then mapped to the logarithm scale by the mapping
function resulting in the auditory spectral
feature vector [17], where indexes time and

is the feature dimension. Finally, each feature vector is
processed by a maximum filter with three bands of width along
the frequency axis to suppress vibrato. We denote the resulting
maximum-filtered feature vector as .

B. ODF Calculation: SuperFlux

SuperFlux takes the -norm difference between two frames
as the ODF, using the following formulation [13]:

(1)

where is an integer indicating the temporal offset,
is the norm, and is the recti-

fier function. The rectifier function returns exactly the value of
the difference if the magnitude of the frequency band increases
from to , and 0 if the magnitude decreases. The ODF is
therefore the sum of the positive difference of every two feature
vectors with frames apart along time.

C. ODF Calculation: The Proposed LR Method
Instead of merely comparing the spectral difference between

two frames, we consider up to previous frames in calculating
the ODF via the following linear reconstruction (LR) problem.

(2)

where denotes the combination coefficients of the
previous frames to reconstruct the current frame,

is the squared norm, and denotes the
regularization term penalized by . To solve the problem (2),
we require that all the input feature vectors to be -normalized
beforehand [27], [28]. In consequence, , and

.
The parameter is referred to as the reconstruction length,

and it should be a non-negative integer. Moreover, the residual
is viewed as the reconstruction error

and is expected to be indicative of onset events.
We consider the following four implementations of (2)
• Ordinary least square (OLS): and no regularizers.
• Non-negative least square (NNLS): and

, where denotes the -th ele-
ment of and the function returns 1 if and 0
otherwise. In other words, if and only if all the
elements in are non-negative. With this constraint, we
ensure that the reconstruction is only additive.

• Basis pursuit denoising (BPDN): and
. This formulation can usually lead to a sparse so-

lution of [29], meaning only a few non-zero elements.
This sparsity constraint implies only a subset of previous
frames is used to reconstruct a given frame.

• BPDN with the non-negativity constraint ( ):
the combination of the above two, considering both the
non-negativity and sparsity constraints.

The first twomethods, OLS and NNLS [30], are implemented
with the ‘numpy.linalg.lstsq’ and ‘scipy.optimize.nnls’ func-
tions of open-source Python libraries [31], [32]. The last two
can be addressed by many optimization algorithms [33]–[35].
Our implementation uses the homotopy-based least angle re-
gression and shrinkage (LARS)-Lasso algorithm [36] from the
open-source toolbox SPAMS [37], for its demonstrated effi-
ciency and effectiveness [38]. We set empirically.
Instead of directly using as the ODF, we further incor-

porate the idea of rectification and calculate

(3)

where is the element-wise product and is
the element-wise rectification operator. That is to say, only the
frequency bands with increased energy from to in the
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Fig. 2. (a) The pre-processed spectrogram of a bow-string cello sample comprising challenging cases including soft onset and vibrato. Vibrato can be found in
1.06–3.03 second. (b) The reconstruction coefficients of the NNLS method across time, where the black regions represent the activation of basis among the
previous -th frame (bottom) to the previous -th frame, with and . (c) The ODF of SuperFlux, with the groundtruth onsets indicated by
downward triangles. (d) The ODFs of NNLS using different reconstruction lengths: (dark green dash line) and (blue line).(a) Magnitude spectrogram
of a music signal (b) Reconstruction coefficients obtained by NNLS (c) ODF of Superflux, a spectral flux method (d) ODF of NNLS, a linear reconstruction method.

original, un-normalized feature vectors are considered in cal-
culating the reconstruction error. Moreover, the rectified recon-
struction error is multiplied by the norm of the original fea-
ture vector . This de-normalization suppresses the frames of
weak energy and empirically improves the performance of the
proposed method, as will be shown in Section III.

D. Peak Picking
Following the settings of the SuperFlux-based submission to

MIREX 2014 [15], we consider the following three heuristics
in picking onset candidates from the ODF, for both SuperFlux
and the proposed method. There is an onset at time if,
• the ODF at time has the maximal magnitude over the
window from ms to ms,

• and, the ODF at time has magnitude greater than or equal
to a threshold plus the average magnitude of the ODF
over the window from ms to ,

• and, there is no other detected onsets in the last 30 ms.
These parameters can be fine-tuned, e.g. we can consider the

window from ms to in the first heuristic for online appli-
cations (i.e. having no access to future information) [15]. How-
ever, for simplicity, we only empirically tune the value of the
threshold in the second heuristic, since the magnitude range
of the ODFs can be different. We finally set to 1.5 and 0.3 for
SuperFlux and the proposed method (including the four pos-
sible implementations), respectively, after optimizing the value
for the overall dataset (see Section III). Moreover, we optimize
the value of and set for both methods.

E. Example
To gain insights, we show in Fig. 2 the ODFs of one cello

solo, ‘14_VioloncelloTaksim_pt1,’ selected from the exper-
imental dataset [3]. We can see from Figs. 2(a) and (c) that
the piece contains rich vibrato components that cannot be
effectively suppressed by maximum filter and that would cause
unfavorable prominent peaks (and accordingly false positives)

in (e.g. in seconds). Fig. 2(d) shows
that, NNLS can effectively mitigate vibrato when the recon-
struction length is sufficiently long (i.e. ), without
compromising the prominence of the peaks for the true onsets.
The prominence of some onsets (e.g. the one at 0.8 second)
is even enhanced. We see from Fig. 2(a) that the note from

seconds has a soft attack time of about 0.20 seconds
and vibrato rate of about 6 Hz. Even for such a case, with

(equivalent to 0.20 seconds) the proposed method has
enough temporal context to model the temporal fluctuation and
to disregard the vibrato.
Interestingly, the activation frames can be observed from the

reconstruction coefficients displayed in Fig. 2(b). Not sur-
prisingly, we see many non-zero elements in the bottom row,
suggesting that the closest frame is often selected in the recon-
struction of a given frame. However, we also see clusters of
non-zero elements around the 30th previous frame, equivalently
150 ms earlier than the current frame. This is near to one period
of vibrato (e.g. 6 Hz). While the maximum filter in SuperFlux
operates along the frequency axis, our method can be viewed as
a temporal filter that suppresses the unwanted temporal fluctu-
ation and timbre variation in music.
Another interesting observation is that, although we do not

enforce sparsity for NNLS, it appears from Fig. 2(b) that the
activation pattern of NNLS is fairly sparse. This may due to
the requirement of additive reconstruction set forth by the non-
negativity constraint. We will show in Section III that NNLS is
the most effective one among the four LR methods.

III. EXPERIMENT

We evaluate the performance of onset detection using the
dataset compiled by Holzapfel et al. [3], which is composed of
2,169 onset events for 11 categories of monophonic instruments
(ney, cello, violin, tanbur, piano, saxophone, kemençe, clarinet,
trumpet, oud, and guitar) plus a category of polyphonic mix-
ture. The dataset is a challenging one as it contains bowed-string
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TABLE II
F-SCORE AND EFFICIENCY COMPARISON BETWEEN SUPERFLUX AND THE PROPOSED NNLS METHOD. BOLD FACE INDICATES BETTER RESULT

TABLE I
RESULT OF ONSET DETECTION FOR LR METHODS, WITH DIFFERENT
RECONSTRUCTION LENGTHS . BOLD FACE INDICATES BEST RESULT

instruments and flutes (i.e. ney) that have lots of soft onsets,
vibrato and timbre fluctuation. The performance is evaluated
in terms of precision, recall and F-score, using the mir_eval
toolbox [39]. Following MIREX, for every groundtruth onset,
we count only one of the predicted onsets, if any, that fall within
a tolerance window of ms around the groundtruth onset as
a correct detection [12].
Table I tabulates the F-scores of the four LR methods with

varying reconstruction lengths. By comparing the rows, we see
that better results are obtained with a moderate value of . Al-
though not completely shown in the table, as increases, the
precision increases and the recall decreases for all the methods,
possibly because using more previous frames makes it easy to
reconstruct both onset and non-onset events. By comparing the
columns, we see NNLS and perform relatively better
than the remaining two, suggesting the importance of consid-
ering non-negativity constraint rather than sparsity constraint
for this method. As long as non-negativity is imposed, we can
actually drop the sparsity constraint. The best results are ob-
tained by using the NNLS method, with .
Table II compares the overall and per-instrument F-scores of

the proposed NNLS method ( ) and our implementation of
SuperFlux based on the open-source codes shared by Böck and
Widmer [13]. Instrument classes are labeled according to their
first three alphabets (e.g. , ). We can
see from Table II that NNLS outperforms SuperFlux for many
instruments, especially for the soft-onset ones (e.g. ney, cello
and violin). The overall F-score of the two methods are 0.822
and 0.793, respectively, which exhibits a significant difference
( -value ) under the one-tailed t-test.
Table II also shows that, while the Holzapfel’s dataset lasts

for 12.98 minutes in total, it only takes 5.88 seconds for NNLS
to perform onset detection for the whole dataset, with i7 quad
cores running at 3.3 GHz on a Mac mini Server. This compu-
tational time is only two times of SuperFlux. Unlike compli-
cated methods such as bidirectional long short-term memory
RNN [10], both SuperFlux and NNLS are applicable to online
real-time scenarios with proper peak picking methods that do
not use future information.
Table III lists the precision and recall of SuperFlux and

NNLS. It can be seen that NNLS performs better mainly due

TABLE III
PERFORMANCE COMPARISON OF SUPERFLUX AND NNLS, AND NNLS WITH

ONE OF THE THREE KEY BUILDING BLOCKS LEFT OUT

to higher recall. Table III also shows the result when we leave
out one of the following building blocks of the LR method:
normalization, rectification, and de-normalization. Without
either normalization or rectification, we have slightly higher
recall, but much lower precision. The precision is particularly
low if we drop out the normalization step. De-normalization
is also important; without it the F-score is lower than that
of the complete system by 0.108, even after we optimize the
threshold of peak picking to 0.06. Without normalization and
de-normalization, the proposed method would almost reduce to
SuperFlux when .
We have also examined the reconstruction coefficients of

NNLS using (see Fig. 2(b)) and found that:
• Cello and violin are the only two instruments with salient
activation around the 30th previous frame, which roughly
corresponds to the vibrato components in music.

• The other instruments have most activation within the
10 closest frames. In particular, guitar, piano and clarinet
seldom uses distant frames in the linear reconstruction.

These observations partially explain why works well
(cf. Table I), and, more importantly, suggest that it is possible
to devise an instrument-dependent mechanism to set the recon-
struction length for better result. This can be done, for ex-
ample, by recognizing the instruments first [40]–[44] before per-
forming onset detection. This is left as a future work.

IV. CONCLUSION

In this letter, we have presented a comprehensive evaluation
of a novel constrained linear reconstruction (LR) based method
to unsupervised musical onset detection. The proposed method
is idea-wise simple, computationally light, and is more effective
than the state-of-the-art SuperFlux method for instruments with
soft onsets. We show that the proposed method is a multi-frame
extension of the conventional spectral flux method, and validate
by experiments the importance of the non-negativity constraint
and rectification in the proposed method. We see three inter-
esting future extensions: instrument-dependent onset detection,
incorporation of other features such as group delay and pitch
[3], [14], [19], and refinement of the reconstruction matrix
by for example online dictionary learning [37].
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