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Recovery of Low Rank and Jointly Sparse Matrices
with Two Sampling Matrices

Sampurna Biswas, Hema K. Achanta, Mathews Jacob, Soura Dasgupta, and Raghuraman Mudumbai

Abstract—We provide a two-step approach to recover a jointly
-sparse matrix , (at most rows of are nonzero), with rank

from its under sampled measurements. Unlike the classical
recovery algorithms that use the same measurement matrix for
every column of , the proposed algorithm comprises two stages,
in each of which the measurement is taken by a different mea-
surement matrix. The first stage uses a standard algorithm, [4]
to recover any columns (e.g. the first ) of . The second uses
a new set of measurements and the subspace estimate provided
by these columns to recover the rest. We derive conditions on the
second measurement matrix to guarantee perfect subspace aware
recovery for two cases: First a worst-case setting that applies to all
matrices. The second a generic case that works for almost all ma-
trices. We demonstrate both theoretically and through simulations
that when our approach needs far fewer measurements.
It compares favorably with recent results using dense linear com-
binations, that do not use column-wise measurements.
Index Terms—Dynamic imaging, joint sparsity, low rank, rank

aware ORMP.

I. INTRODUCTION

T HE multiple measurement vector (MMV)
problem considers the recovery of a matrix

that is jointly -sparse (i.e,
only -rows of are nonzero) [1]–[6]. Current schemes sample
all the columns of the matrix using the same measurement
matrix , , [1], [2], [4]–[7]:

(1)

The theoretical results show that can be recovered from
using combinatorial searches if

(2)

where is the smallest number of linearly dependent
columns of [1], [5].

Manuscript received March 19, 2015; revised June 09, 2015; accepted June
09, 2015. Date of publication June 19, 2015; date of current version June 25,
2015. This work was supported in part by the U.S. National Science Foundation
under Grants EPS-1101284, ECCS-1150801, CNS-1329657, CCF-1302456,
CCF-1116067, NIH 1R21HL109710-01A1, ACS RSG-11-267-01-CCE, and
ONR N00014-13-1-0202. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Michael Wakin.
The authors are with the Department of Electrical and Computer Engineering,

University of Iowa, IA 52242 USA (e-mail: sampurna-biswas@uiowa.edu;
hemakumari-achanta@uiowa.edu; mathews-jacob@uiowa.edu; soura-das-
gupta@uiowa.edu; raghuraman-mudumbai@uiowa.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/LSP.2015.2447455

When the signal matrix has full row rank, this approach
thus offers a two fold reduction in the number of measurements
over the independent recovery of the columns using classical
compressed sensing [1].
In several applications, including the recovery of dynamic

MRI data motivating this paper [8], [9], live in a subspace
of dimension . Consequently both and have rank
much smaller than . In such cases the gain offered by the clas-
sical MMV schemes over independently recovering the vectors
using compressed sensing is small [5], [4], [2]. In this setting,
there is another class of previous work that involves recovery
of low-rank and jointly sparse matrices from their undersam-
pled measurements [10], [11]. Unlike (1), [10], [11] do not as-
sume column-wise measurements. Such measurement schemes
are unrealizable in applications like diffuse optical or fluores-
cent tomography, and dynamic imaging, where each column of

corresponds to a frame in the image time series, and each
measurement is the linear combination of entries of just one spe-
cific column.
Motivated by dynamic imaging applications, we assume the

measurement setting of (1) with . We con-
sider the partition of , specified by

(3)

where and . We assume the ob-
servations to be specified by

(4)
(5)

where . We introduce a two stage algorithm to re-
cover . In the first stage, we measure as in (4) and recover
it from using the classical MMV scheme. Since we rely on
classical MMV scheme and results from [1], [5] to solve for

, our theoretical results for the recovery of also assume
combinatorial search. The recovered columns of provide an
estimate of the -dimensional subspace spanned by the . Once
the subspace of is estimated from , the subspace aware re-
covery of follows from a matrix inversion. To guarantee that
any captures the entire subspace of , we require

. This condition is not too restrictive, since
drawn from an -dimensional subspace will generically satisfy
this requirement. In this two step recovery method, the results
of the second stage potentially depends on the accuracy of the
support and subspace recovered in the first step. Our simulations
show that the error in the first step is small with more measure-
ments. Since only few columns are recovered in the first step,
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increasing the number of measurements in the first step does not
considerably increase the total number of measurements.
The main contributions of this paper are formulating this two

stage recovery approach and providing sufficient conditions for
subspace aware recovery of . In particular, with respect to
the latter, we show the following.
(a) We show that is a sufficient condition

to guarantee the subspace aware recovery of any jointly
-sparse (assuming that the first step has successfully

recovered ), with spark , from (4) and (5). We
term this condition as the worst-case sufficient condition.

(b) We show that for any of rank , a matrix with
rows that does not uniquely recover , lies on a set of
zero measure. This condition is termed as the generic case
sufficient condition.

The worst case yields a two-fold gain over traditional
schemes. The generic case result shows that the worst case
conditions are pessimistic: in practice, perfect recovery is
possible with far fewer measurements with almost all row
measurement matrices. This is so as for a given an with
rows that does not provide unique recovery lies on a set of

measure zero. Thus such a randomly selected should effect
exact recovery with high probability. Indeed as is well known
in the vast literature on random matrices, an with elements
from i.i.d. Gaussian distributions, [13] should effect recovery
with high probability. The number of measurements that are
sufficient to recover almost all matrices compares favorably
with that quantified in the dense sampling setting of [10], [11].
The intuition behind the above results on subspace recovery

of can be easily illustrated using a rank-1 matrix . If the
first column is available, the remaining columns

can be recovered using only one non-zero measurement per
column, by choosing to be a row vector, provided
. The set of all row vectors , which satisfy , has
zero measure for any specific ; this is the generic case suffi-
cient condition. Thus, one measurement per column (e.g. using
a row vector, whose entries are e.g. Gaussian random variables)
will suffice to recover . The condition can be en-
sured for all -sparse if the spark of is at least ,
which implies that has at least k rows; this is the worst-case
sufficient condition on , which will guarantee the recovery of
any , including the worst possible .
Section II formulates the MMV problem and justifies our

approach. A practical algorithm is presented in Section III.
Section IV gives simulations and Section V concludes.

II. THE MULTIPLE MEASUREMENT VECTOR PROBLEM
Since MMV scheme applies the same measurement matrix to

all columns of , the total number of measurements in (1) is at
least ; is the rank of . Thus in the best
case scenario ( ), MMV can provide a factor of
two reduction in the number of measurements over the indepen-
dent recovery of the vectors . However, the gain
is minimal when and hence .
Yet intuitively, when is small, there is a great deal of
redundancy in the matrix , which should substantially reduce
the number of measurements. We provide a way to achieve this
reduction.

A. Proposed approach
We make the following assumption.
Assumption 1: In (3) , , has

at most nonzero rows, and .
Thus any columns of are linearly independent and span

the column space of . We show that can have far fewer
rows than .

B. Recovery of
As , the method of [1] can be used to recover
if ; The original result in [1] relied

on , which was later shown to be equivalent to
[5].

As and the same matrix is used for
columns in , the total number of measurements required
to estimate is at least , and equals that required by the
scheme of [1]. The gains in our approach is in the recovery of

especially when . Thus is the
fewest measurements required to get the subspace.

C. Recovery of
As and , every column of

is a linear combination of the columns of . Thus there exist
such that i.e.

(6)

As has been determined in step one, the recovery of
entails estimating . The unique recoverability in particular is
equivalent to having full column rank. Recovery entails

(7)

We first provide a worst-case condition on that ensures
that whenever obeys Assumption 1.
Theorem 1: Under Assumption 1 consider . If

then . If
then there is an obeying Assumption 1 for which

.
Proof: Suppose but .

Then there exists a nonzero such that

(8)

As has at most nonzero rows so does . As has full
column rank, . Thus (8) implies that has linearly
dependent columns. Thus . The contradiction
proves the first part of the theorem.
Suppose i.e. has at most linearly depen-

dent columns. Without loss of generality suppose these are the
first . Thus for some one has
where for some , . As one can
find with rank that has in its range space. In
particular, is such that there exists a such that

. Choose
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Clearly obeys Assumption 1. As

. This proves the second part of the theorem.

Under the above conditions, the recovery of through (7) is
well defined. Combining the number of measurement needed at
each step of the two-step algorithm, the total number of mea-
surements that are sufficient for the recovery of all matrices
is . When the number
of snapshots are much greater than the rank ( ), this
setting provides approximately a factor of two savings over

, with . Contrast this with the clas-
sical MMV scheme which provides a factor of two savings only
when . When the support is specified, can be repre-
sented using parameters; comparing
the worst-case result with the degrees of freedom, the gap be-
tween the two is given by .
This worst case bound is pessimistic. The theorem below pro-

vides sufficient conditions for the recovery with almost all ma-
trices.
Theorem 2: Under Assumption 1, the matrix is non-

singular for almost all matrices .
Proof: Observe that is a polynomial in the en-

tries of that is either the zero polynomial or takes nonzero
values every where, except on a manifold of zero volume [12].
Thus it suffices to show that there is at least one , possibly
complex, for which .
Under Assumption 1, . Here

and obey , and
is a nonsingular diagonal matrix. With ,

is invertible. This proves the result.
The above result shows that has full column rank for

almost all , for . Combining the required
measurements at each step, we obtain

. For of course .
Thus, the gain offered by the proposed framework over clas-
sical settings is quite significant, especially since and
the second step dominates. Unsurprisingly, the generic number
of measurements per snapshot that are required to recover
approaches as the number of snapshots . The differ-
ence between the degrees of freedom and the sufficient number
of measurements for the recovery of almost all matrices is given
by . Since , the gap
is considerably smaller than the worst-case considered above.

III. RECOVERY ALGORITHM

We now describe the two-step sequential recovery algorithm
to estimate and . The analysis above for the perfect re-
covery of and assumes that measurements are not cor-
rupted by noise. Moreover, since recovery is computationally
infeasible, surrogates such as greedy optimization or mini-
mization algorithms will be used. Hence, we expect the number
of measurements required for practical and stable recovery algo-
rithms to be significantly larger than the theoretically predicted

values above. However, the same remarks also apply to classical
MMV recovery, and our two-step approach still delivers com-
mensurate improvements over recovery algorithms based on the
classical MMV model.
One cannot use the algorithm specified by (2) to estimate

from as it involves a computationally infeasible combinato-
rial search. If were full rank, the solutions can be obtained
using the MUSIC algorithm. As we assume , this ap-
proach is infeasible. We use a greedy algorithm to determine

. As classical greedy algorithms for joint sparse recovery fail
to exploit the subspace structure of the problem, we use the rank
aware order recursive matching pursuit (RA-ORMP) algorithm
to improve the recovery [5].
We estimate using a pseudo-inverse as

where

(9)

IV. NUMERICAL SIMULATIONS

The main focus of this section is to demonstrate the ability
of the two step recovery algorithm to considerably reduce the
number of measurements using numerical simulations. We use
the greedy RA-ORMP scheme [5] for the joint sparse recovery
of . Hence, our simulations are not in full agreement with
MMV guarantees that assume combinatorial optimization
[1]–[6]. As with classical MMV schemes, for robustness we
use more than the postulated minimum number of observa-
tions. Our goal is to show that our approach achieves the same
accuracy as the algorithms using single measurement matrices,
with far fewer measurements.
We consider several random realizations , each of

which are of rank and are jointly -sparse. We generate these
random signal realizations as by setting randomly
selected rows of the matrix , where entries of and

are zero mean Gaussian random variables with unit
variance. All matrices satisfy the condition .
We assume , , , . The columns
of the above matrices are grouped as , where

and . We consider the recovery of
from and , where

and are measurement matrices whose entries are
Gaussian distributed zero-mean random variables with variance
of one.
The performance of the joint sparse recovery of using the

RA-ORMP algorithm is studied in Fig. 1. The solid curve cor-
responds to recovery from noiseless measurements. The dashed
curve is the noisy setting, where SNR( ) is 5 dB. The per-
centage of the support indices that are correctly recovered and
the signal to error ratio (SER) of the estimated averaged over
1000 runs, are respectively in the plots on the left and right. SER
& the signal to noise ratio (SNR) of the noisy measurements
are defined as

(10)

(11)
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Fig. 1. Performance of RA-ORMP algorithm in recovering (1st step of
the algorithm). The left subfigure shows the accuracy of support recovery as a
function of normalized measurements . The SER( ) is shown on
the right subfigure. The solid curve shows the noiseless case & dashed curve is
for SNR( db. (see (10,11)) (a) Support recovery (b) SER .

Fig. 2. Support-aware recovery of (2nd step of the algorithm) as a function
of normalizedmeasurements . The SER of the estimate (in dB) as a function
of the normalized measurements are shown for the noiseless (left) and noisy
setting (right), respectively. (See main text) (a) Noiseless (b) SNR & SNR

dB.

The vertical lines correspond to mea-
surements, which is the minimum required for successful re-
covery in the absence of noise (see (2)). With measure-
ments the accuracy of the support recovery is close to 100% in
the noiseless setting. More measurements are needed for sup-
port recovery with lower SER of 5 dB.
We study the performance of the subspace aware recovery

of in Fig. 2. The plot on the left is the noiseless setting,
while the one on the right corresponds to the noisy case. The
three curves in each of the plots correspond to recovery with
different support estimates. The solid line marked with circles
corresponds to the case when the support is accurately known,
while the dashed curve corresponds to the support estimated
using ORMP with measurements. Similarly, the
square marked curve corresponds to the support estimate where

measurements are used by ORMP. The vertical lines
correspond to , which is the minimum predicted
by Theorem 2 for subspace aware recovery. We observe that
perfect recovery is obtained in the noiseless setting if the sup-
port is known perfectly (cyan curve) and when .
The lower SER of the estimated when
resulted from incorrect support estimates during recovery.
Specifically, a small fraction ( of runs) resulted in one
of the sparse locations being wrongly estimated. This error
propagated to the subspace aware recovery of .
We compare the signal to error ratio of the reconstructions

obtained by the proposed scheme against the classical MMV
and the convex optimization scheme using dense measurements
described in [10] setting in Fig. 3. The dense measurements
were obtained by computing the inner-products with Gaussian

Fig. 3. SER of the entire matrix ( ) vs. the number of normalized measure-
ments (normalized to ). The SER of the estimates (in dB) are shown
for the noiseless (left figure) and noisy setting (right figure), respectively. See
text for more details (a) Noiseless (b) SNR & SNR dB.

random matrices. The matrix recovery is posed as the convex
optimization scheme with as noise variance:

(12)
which was implemented using the CVX package. The param-
eter was optimized for each under-sampling factor to yield the
best possible results.We normalize the total number of measure-
ments bydividing it by .Weassumed , ,

, and in these experiments, to keep the computational
complexity of the convex optimization scheme tractable. We
consider the noiseless setting as well as the noisy case, where
SNR( ) and SNR( dB. The classical MMV recovery
implemented using ORMP is indicated by the dashed curve
marked by plus sign. The curve marked by crosses, corresponds
to the recovery using dense measurements using convex opti-
mization. The other curves correspond to the proposed scheme
with different number of measurements for recovering , ex-
pressedasafactorof .Weobserve that theproposedscheme
provides good recoverywhen the number ofmeasurements in the
first stepequals .Bycontrast, the classicalMMVscheme
requires more measurements to achieve the same signal to error
ratio.We observe that the performance of the proposed scheme is
slightly better than the dense measurement scheme, possibly be-
cause of the convex optimization prescribed by [10] for the latter.
For the dense measurement scheme, a non-convex optimization
method may have provided better recovery, as indicated by the
theoretical results in [11] but is computationally infeasible.

V. CONCLUSIONS AND DISCUSSION

A two step scheme is given to recover a jointly -sparse, low
rank matrix of rank and spark from its under
sampledmeasurements, usinga separatemeasurementmatrix for
each step. Thefirst step recovers columns using classicalMMV
schemes providing a basis of . The basis is used to recover the
remaining columns in the second step. Conditions on the second
measurement matrix are given for both worst case and generic
settings. The use of two, as opposed to one, measurement ma-
trices considerably reduces the number of samples required to re-
cover a jointly sparse, low-rank matrix. Our scheme compares
favorably with schemes requiring dense sampling, even though
they are inapplicable to a number of settings such as MRI.
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