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Patch-based Scale Calculation for
Real-time Visual Tracking

Yulong Xu, Jiabao Wang, Hang Li, Yang Li, Zhuang Miao, and Yafei Zhang

Abstract—Robust scale calculation is a challenging problem in
visual tracking. Most existing trackers fail to handle large scale
variations in complex videos. To address this issue, we propose a
robust and efficient scale calculation method in tracking-by-de-
tection framework, which divides the target into four patches
and computes the scale factor by finding the maximum response
position of each patch via color attributes kernelized correlation
filter. In particular, we employ the weighting coefficients to remove
the abnormal matching points and transform the desired training
output of the conventional classifier to solve the location ambi-
guity problem. Experiments are performed on several challenging
color sequences with scale variations in the recent benchmark
evaluation. And the results show that our method outperforms
state-of-the-art tracking methods while operating in real-time.

Index Terms—Correlation filter, real-time visual tracking, scale
calculation.

I. INTRODUCTION

V ISUAL tracking, where the objective is to estimate loca-
tions of a target in an image sequence, is one of the most

important problems in the field of computer vision with appli-
cations ranging from surveillance and human-computer interac-
tions to robotics and medical imaging [1], [3].
In recent years, tracking-by-detection methods [4]–[11] show

excellent tracking performance. These approaches work by
posing the task of target localization as a classification problem.
The decision boundary is obtained by learning a discriminative
classifier online using image patches from both the target and
the background. Heriques et al. propose the circulant structure
with kernels (CSK) by using correlation filters in a kernel space
[7] which reaches a top speed in a recent benchmark [2]. The
CSK method builds only on illumination intensity features and
is further improved by using histogram of oriented gradients
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(HOG) features in the kernelized correlation filter (KCF)
tracking algorithm [9]. In [8], Danelljan et al. extend the CSK
tracker with color attributes or color names (CN) and propose
an adaptive low-dimensional variant of color attributes.
Most tracking-by-detection methods [4]–[9] try to handle

scale variations in complex videos under the hypothesis that
the target scale is constant. This assumption, however, is not
very reasonable in real life, as the distance between the moving
object and the camera is often in a state of flux. On the other
hand, several existing approaches [12]–[15] estimate scale vari-
ations but operate with a lower efficiency, which makes them
limited in practical applications. An ideal scale calculation
approach should be robust to scale variations while operating
in real-time.
This letter proposes an efficient approach for robust scale

calculation in visual tracking, the contributions of which are
two-folds. First, in contrast to existing methods, we divide the
target into four patches after localizing the object in the cur-
rent frame and a new classifier is trained on every patch. The
scale factor of two adjacent frames is computed by finding the
maximum response position of each patch. In order to enhance
the robustness in the process of scale calculation, we employ
the weighting coefficients to remove the abnormal candidate
points. Second, for the purpose of decreasing the location ambi-
guity problem in our tracker, we transform the desired training
output of the conventional classifier to make more accurate po-
sitioning.We also compare our approachwith 11 state-of-the-art
trackers and the results show that our approach outperforms the
other methods while running at more than 60 frames per second
(FPS).

II. PATCH-BASED SCALE CALCULATION

Recently, the correlation filter based trackers [6]–[10] are
becoming increasingly popular due to their promising perfor-
mance and computational efficiency. Among these trackers,
the CN tracker [8] achieves very good performance with high
speed (168 FPS). However, the CN tracker cannot handle
the scale problem well. Once the scale of the target changes
dramatically, the trackers may fail to relocate the objects. In
this section, we develop our method based on the CN tracker to
build a real-time patch-based tracking system which is robust
to scale variations.

A. The CN Tracker

The CN tracker [8] employs a robust update scheme by con-
sidering all previous frames when computing the current model.
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The key for its better performance, especially in tracking speed,
is the kernel trick and the adaptive low-dimensional variant
of color attributes. The CN tracker considers all extracted
appearances , and all their cyclic shifts ,

of the target from
the first frame till the current frame as the training examples
for the classifier. They are labeled with a Gaussian function

. The cost function is constructed as the weighted av-
erage quadratic error over all previous frames and the solution
is constrained to only contain one set of classifier coefficients
. Each frame is weighted with a constant . The cost

function is:

(1)

where , represents the map-
ping to the Hilbert space induced by the kernel . The inner
product of and is computed as

. The constant is a regularization param-
eter.
The cost function is minimized by

(2)

In (2), F and F , where F denotes
the Fourier transform; is the output of
the kernel function . The weights are set by using a learning
rate parameter . The total model is updated using (3). The nu-
merator and denominator of in (2) are
updated separately; denotes the learned target appearance.

(3)

In the tracking, a patch with size is cropped out in
the new frame . The confidence score is calculated as

F (4)

whereF denotes the inverse Fourier transform; is the el-
ement-wise product; F , .
The target position in the new frame is then estimated by finding
the location with the highest score.
In order to decrease the computing time, the CN tracker ap-

plies an adaptive low-dimensional variant of color attributes. In
CN tracker, let be the -dimensional learned appearance.
Then, the dimensionality reduction technique is employed to
find a projection matrix with orthonormal column
vectors. This matrix is used to compute the new -dimen-
sional feature map of the appearance by the linear mapping

.

B. Patch-based Scale Calculation via CN
In our approach, let the center position of the target in the

frame be , and the target scale be pixels.

Fig. 1. Illustration of the matching points in the -th frame.

At the -th frame, we extract an image patch with
size around the center , as in [8]. Here is
the expansion coefficient. Unlike [8], we suggest to uniformly
resize all patches with size , then the learned target
appearance and the learned classifier coefficients
are updated using (3). Let the center position of the target
be , then divide into four patches and their central
locations are , ,

and .
A new classifier is trained on every patch using (1), so there

are four different classifiers in total. In the four patch trackers,
the model is updated by (3) and the dimensionality reduction
technique is also adopted as described in [8].
In a new frame at time , we calculate scale factor after lo-

calizing the object. Firstly, we extract a can-
didate image patch around the center and calculate
the confidence score by (4). The target position in the -th
frame is estimated by finding the location with the highest score.
Next, we extract a candidate image patch
around the center and set up coordinate system centered by
, as shown in Fig. 1. Then, the confidence score is calculated

using (4) in every patch and the four matching points with the
highest score are , ,
and .
The scale factor is calculated as

(5)

where the weights can make the results more robust by re-
moving the abnormal matching points, and they are set by

(6)

Here are thresholds, which are empirical parameters.
The scale in the -th frame is calculated by

(7)

Finally, in the -th frame, we extract an image patch with
size around the center to update the appearance
and coefficients using (3).
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C. Desired Training Output
During training, wemust attach a label, also called the desired

training output, to each sample. In CN tracker, it is a Gaussian
function

(8)

where is spatial bandwidth proportional to target size,
is target location, and

.
At the point ,

(9)

According to (9), the partial derivatives of Gaussian function
equal to zero at the maximum point, which means that the re-
sponses are too close to be distinguished. And in CN tracker,
the target position is estimated by finding the location with the
highest score, so the Gaussian function in (8) will bring the lo-
cation ambiguity problem, especially in scale calculation. And
this problem is verified in our experiments in Section III-B. To
solve this problem, we replace the desired training output of a
target location using (10).

(10)

where is a constant.
The partial derivatives are calculated as

(11)

In particular, at the point , the value and the
partial derivatives of the function are

(12)

Here and denote right derivative;
and denote left derivative.
In (12), the right derivative and left derivative are inversely

proportional to , which means that the responses can be distin-
guished easily. And this is beneficial to locating target as well
as decreasing the location ambiguity in tracking.

III. EXPERIMENTS

We first show that the performance is significantly improved
by employingweights in (5) and using (10) in lieu of Gaussian
shape of the desired output. And then we compare our scale
calculation approach with state-of-the-art trackers.

A. Experimental Setup
The approach proposed in this letter is implemented inMatlab

2013a. We perform the experiments on an Intel i5-4690 CPU
(3.50 GHz) with 16 GB RAM and employ 10 challenging se-

TABLE I
COMPARISON OF OUR APPROACH WITH THE BASELINE

quences with scale variations in [2]. The expansion coefficient is
set to , the expansion patch is resized to ,
the target is and the four patches are . We use
the adaptive low-dimensional color attributes instead of

in [8]. The optimal parameter values for the
expansion patch and for the four patches are ob-
tained by repeated experiments at the step of 0.01 in the interval

. The five thresholds are empirical parameters,
which are set as ,
, , and

. Here denotes rounding toward
negative infinity and denotes rounding toward positive in-
finity. The parameters set a limit to the size of the scale
factor, which is controlled in the range of 0.85 and 1.15, and

ensures that the width and height of the target enlarge or re-
duce simultaneously. The other parameter values are the same
as conventional CN tracker.
We present the results using center location error (CLE), dis-

tance precision (DP) and overlap precision (OP). CLE is the av-
erage Euclidean distance between the estimated center location
of the target and the ground-truth. DP is the percentage of frames
where the CLE is smaller than a threshold. We report DP values
at a threshold of 20 pixels. OP is defined as the percentage of
frames where the bounding box overlap exceeds a threshold

, and the threshold of 0.5 is set here, as in [17].

B. Robust Scale Calculation

Table I shows the results of our scale calculationmethods pro-
posed in Section II. We use the conventional CN tracker without
scale calculation as a baseline. denotes our scale calculation
method with (6) and (8); # denotes scale calculation method
with (10) but without (6), which means for all patches
in (5). In our tracker, by using the weights to remove the
abnormal matching points, our method outperforms baseline by
15% in average OP. Similarly, in our# tracker, the performance
is improved with a reduction in average CLE by 64.8 pixels,
which proves that replacing the Gaussian shape of the desired
output with (10) can decrease the location ambiguity. Compared
with the baseline CN tracker, our approach with (6) and (10)
significantly improves the average OP from 44.8% to 85.2%,
outperforms CN by 16.5% in average DP and enhances the per-
formance with a reduction in the average CLE by 77.1 pixels.
These clearly demonstrate the effectiveness and the robustness
of our scale calculation in object tracking. However, this per-
formance gain is achieved at the cost of a higher computational
load. Comparing our approach with the baseline CN tracker, we
find that the average speed of our tracker reduces from 168 FPS
to 64 FPS.
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TABLE II
COMPARISON OF OUR APPROACH WITH 11 STATE-OF-THE-ART TRACKERS

Fig. 2. Precision and success plots. The legend of the precision plot reports the
average DP score at 20 pixels for each method and the legend of the success
plot contains the area-under-the-curve (AUC) score for each tracker.

C. Comparison with State-of-the-art

We compare our approach with 11 state-of-the-art trackers:
CN [8], DSS [15], DSST [18], KCF [9], L1APG [13], LSST
[14], PCOM [16], STC [10], Struck [4], TGPR [19] and TLD
[12], which have shown to provide excellent performance in the
literature. The comparison on the 10 benchmark sequences is
shown in Table II. We present the results using average CLE,
DP and OP over all sequences. Moreover, a speed comparison
in average FPS is also provided. The best three results are high-
lighted in bold.
Among the existing trackers in our evaluation, KCF provides

the best results with an average CLE of 30.6 pixels. Our ap-
proach improves the performance with a reduction in average
CLE by 21.4 pixels. Simultaneously, KCF also provides the
best results among the existing methods with an average DP
of 85.2% while our approach exceeds it by 6.2% in average
DP. Finally, in overlap precision, DSST provides the best re-
sults among the existing methods with an average OP of 71.4%.
Our approach transcends the tracking performance by achieving
an average OP of 85.2%. In addition, our method is significantly
faster than the best three performing compared trackers in de-
scending order of OP, which is 24 FPS faster than DSST, more
than 4 times faster than TLD and more than 90 times faster than
TGPR in average FPS.
Fig. 2 contains the precision and success plots illustrating the

average DP and OP over all the 10 sequences. In both precision
and success plots, the proposed method outperforms the best
existing method (KCF and DSST). In summary, the precision
plot shows that our method is more robust than state-of-the-art
trackers, and the success plot demonstrates that our approach
computes scale more accurately on the benchmark sequences.
Our approach also has a certain robustness to handle other

challenging problems. Fig. 3 shows the 10 benchmark se-
quences with scale variations. These sequences also pose

Fig. 3. A visualization of the tracking results of our approach and the state-
of-the-art visual trackers CN, KCF, TGPR, TLD and DSST on 10 benchmark
sequences.

challenging problems such as occlusion (Fig. 3(a), (e), (g) and
(j)), fast motion (Fig. 3(b)), rotation (Fig. 3(c), (d), (e) and
(f)), illumination variations (Fig. 3(h) and (i)) and background
clutter (Fig. 3(a), (h) and (i)). Despite these challenges, our
tracker accurately calculates both the scale and position of the
target.

IV. CONCLUSION
In this letter, we propose a scale calculation approach for

visual object tracking. Our method works by dividing the
target into four patches and matching the center location of
each patch via color attributes kernelized correlation filter.
With this method, the scale computation is transformed into
locating the centers of the patches. Experiments are performed
on several challenging benchmark sequences with significant
scale variations. The results clearly demonstrate that our ap-
proach outperforms state-of-the-art methods, while operating
in real-time.
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