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Remarks on the Spatial Smoothing
Step in Coarray MUSIC

Chun-Lin Liu, Student Member, IEEE, and P. P. Vaidyanathan, Fellow, IEEE

Abstract—Sparse arrays such as nested and coprime arrays use
a technique called spatial smoothing in order to successfully per-
form MUSIC in the difference-coarray domain. In this paper it is
shown that the spatial smoothing step is not necessary in the sense
that the effect achieved by that step can be obtained more directly.
In particular, with denoting the spatial smoothed matrix with
finite snapshots, it is shown here that the noise eigenspace of this
matrix can be directly obtained from another matrix which is
much easier to compute from data.

Index Terms—Coprime arrays, nested arrays, sparse arrays,
spatial smoothing.

I. INTRODUCTION

S PARSE arrays open a new approach to sensor array pro-
cessing because of the high degrees of freedom offered in

the difference-coarray domain. Nested arrays [1] and coprime
arrays [2] are examples of sparse arrays obtained from a union
of two uniform linear arrays (ULAs) with different interelement
spacings. The increased freedom has been used to identify

sources (DOAs) from only sensors [1], [2]. Sparse
arrays can be used in various applications, including DOA
estimation [1]–[4], line spectrum estimation using MUSIC
algorithms [5], super resolution [6], [7], two dimensional array
design [8]–[10], beamforming and coprime spatial filter bank
design [11]–[13].
In DOA estimation using the MUSIC algorithm [5] or any

gridless algorithm [14], a technique called spatial smoothing
[15] is sometimes used to construct a positive definite matrix
on which MUSIC operates. For sparse arrays which use the
MUSIC algorithm in the difference-coarray domain, it was
proved in [1], [5] that the spatially smoothed matrix in
the coarray domain is a perfect square of a positive definite
matrix which contains noise-subspace information. Using
this fact it was possible to separate the signal subspace and the
noise subspace based on the eigenvalues of . This leads to
a successful implementation of MUSIC in the coarray domain.
It should be mentioned herein that when DOA estimation based
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on coarray domain is performed by formulating a dictionary
based approach [16], spatial smoothing is not necessary. It
has been used in the past only when the MUSIC algorithm or
other gridless algorithms [14] is to be employed in the coarray
domain.
In this paper, we will show that spatial smoothing is not

needed even to implement the MUSIC algorithm in the coarray
domain. The performance of [1], [5] can be achieved without
it. This is done as follows: based on the snapshot-based covari-
ance estimate of the data, a new matrix is introduced which
can be directly used to find the noise eigenspace associated
with (the finite-snapshot version of of [1], [5]). Even
with finite number of snapshots, these matrices are related as

, where is a constant factor, unlike [1], [5]
where such a relation is proved for the ideal infinite snapshot
scenario. The MUSIC spectrum which is usually computed
based on can therefore be directly computed based on .
The construction of is much simpler than that of while
the performance is guaranteed to be exactly the same for a fixed
number of snapshots. So the complexity of the algorithm is less
than that of [1], [5]. It turns out that the intermediate matrix
is indefinite (although Hermitian), but we show that this is of
no consequence.
While computational reduction is an advantage, the insight

provided by the simplification is perhaps more important,
as it might lead to considerable theoretical simplification in
the case of multidimensional arrays [9], [10], multiple level
nested arrays [17], and other future developments of coarray
applications.
The paper outline is as follows: Basic ideas from sparse ar-

rays are reviewed in Section II. The new matrix is intro-
duced in Section III, and it is shown how coarray MUSIC can
be successfully performed from certain eigenspaces computed
from this matrix, as well as the computational complexity anal-
ysis. In Section IV, the results are further discussed, before
Section V concludes the paper.

II. PRELIMINARIES

Consider a sparse array whose sensors are located at ,
. Here stands for the minimum spacing between sensors and
is an integer set. As an example, a two-level nested array [1]

is specified by the following

(1)
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Fig. 1. An illustration of the sets , , and . Here we consider a co-
prime array with and .

where and are the number of sensors at the first level
and the second level, respectively. On the other hand, coprime
arrays are represented by [2]

(2)

Here and are coprime integers. To add clarity, the ge-
ometry of nested arrays and coprime arrays can be found in
Fig. 1 in [1] as well as Fig. 1 in [5], respectively. Assume
monochromatic sources with direction-of-arrival (DOA) infor-
mation for impinge on a sparse
array . Then the received signal vector is modeled as

(3)

where , where denotes the cardinality
of . The spatial steering vectors are column vectors with
entries for . The subscript is appended to indi-
cate that these entries are defined over the grid . Here
and are zero-mean uncorrelated random vectors satisfying

and . The parameter is the
normalized DOA, defined as .
The essence of sparse array processing is to convert the data

to their second-order (or higher-order) statistics. The covariance
matrix of is defined as

(4)

Note that in (4), the matrix has entries
for , where and are sensor

locations in our sparse array . It can be seen that such quantity
depends only on the differences of sensor locations ( ).
Definition 1: (Difference-Coarray). Let be an in-

teger set specifying the sensor locations. The set
is called the difference-coarray of the

sparse array .
Definition 2: (Bracket notations). Given a support set ,

the signal defined on it is denoted as a column vector .
We use to denote the th component of this vector.
For we use the triangular bracket notation
to denote the value of the signal at the support location .
For example, if and ,
then , whereas

. The notations extend
to covariancemartrices as follows:
and .

The vectorized version of can be viewed as a
spatial steering vector defined over . Then, it is plausible to
rewrite (4) into the vector expression as

where for . In convention, is
arranged in ascending order. That is, the first entry in
corresponds to while the last entry corresponds to

. Note that the degrees of freedoms can be increased
due to the increase in the number of sample points, from
to . Sparse arrays are designed properly so that the dif-
ference-coarray contains mainly a ULA part around the
origin, which is denoted by . Fig. 1 illustrates an example
of and coprime array. Based on the relations be-
tween and , the signal over is then constructed
to be

(5)

where for .
To estimate the normalized DOAs , previous works

perform (forward) spatial smoothing on to obtain a spa-
tial smoothed matrix and then apply the MUSIC algorithm
[1], [5]. is defined as

(6)

where is a selection matrix defined as

(7)

and

(8)

is a positive semidefinite matrix [1], [5]. Hence, is suit-
able for the MUSIC algorithm, where we can separate signal/
noise subspaces and then define a valid MUSIC spectrum.
In practice, the signal vector measured at sparse arrays is de-

noted by , where the tilde notation, throughout this paper,
stands for observed or measured quantities. Then the second-
order statistics is estimated using snapshots,

(9)

where is an index for snapshots. If we start from instead
of then the quantities , and are replaced
with the finite snapshot versions , and , which
are used in the following developments. Then, can be de-
termined from as follows:
Definition 3: The measurement vector is defined as
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for all . The set collects every pair ( ) that
has contribution to the coarray index , which is

Similarly, the measurement vector over is

for all .
According to (6), the measured spatial smoothed matrix

is computed from and then the MUSIC algorithm can be
applied to obtain line spectrum or DOA estimates.

III. SPARSE ARRAYS WITHOUT SPATIAL SMOOTHING

In this section, we will propose a new matrix such that it
produces exactly the same MUSIC spectra as [1], [5] without
implementing spatial smoothing.
Lemma 1: is Hermitian symmetric. That is,

, where is the anti-identity matrix that has ones along
its anti-diagonal entries and zeros elsewhere.

Proof: Hermitian symmetry is equivalent to
for . Starting with Definition 3, we obtain

which is based on these properties: ,
( if and only if ( , and
is a Hermitian matrix. Pulling out the complex conjugate yields

Therefore, we obtain , which completes
the proof.
Theorem 1: Let be the following Toeplitz matrix,

...
...

. . .
...

where is defined in (8). Then is Hermitian and
.
Proof: It was proved in Lemma 1 that follows the

Hermitian symmetric property. The same property also holds
true for by replacing with in the proof. The
Hermitian of is, by definition,

...
...

. . .
...

Since , each entry in is replaced with one
term in . We obtain , implying is Hermitian.
The next part involves expression of in terms of , which

is defined in (7). Since is the ULA part in the coarray do-
main, extracts the responses on .
According to the definition of , we obtain

The square of is then evaluated as

which is equivalent to .
The importance of Theorem 1 is that the MUSIC spec-

trum can be computed directly from , rather than the
spatially smoothed matrix . It is a direct consequence of

that (i) eigenvalues of are proportional to
the square of eigenvalues of , and (ii) and share the
same eigenspace. These claims lead to the following corollary:
Corollary 1: MUSIC spectra based on either or are

identical if the signal and noise subspaces of are determined
by magnitudes of its eigenvalues.

A. Computational Complexity Analysis

Our proposed method reduces the complexity of the existing
approaches [1], [5]. Here, a more detailed comparison on the
number of multipliers will be made to demonstrate the compu-
tational savings. The DOA estimation over sparse arrays can be
divided into the following three stages:
1) Construct from . Once the sensor array collects

snapshots, is estimated from (9), taking op-
erations. Based on Definition 3, multipliers are in-
volved. Using (8) and the fact that ,
as proved in [1], [5], we see that the total complexity is

.
2) Establish or . In [1], [5], is implemented ac-

cording to (6), where is of size . Since each term
takes multiplications, the cost for is 1.
On the contrary, to evaluate , no multiplication is needed,
since from Theorem 1, is reshaped into a Toeplitz
matrix without further arithmetic operations.

3) MUSIC spectra. This step is dominated by the eigen-de-
composition of an Hermitian matrix, which can be
either or . It is known that eigen-decomposition re-
quires around operations [20].

1Note that there are some matrix multiplication algorithms with complexity
[18], [19] but it still takes some resources to do so.
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Thus, the computational complexity for the two approaches
are

As we can see, our proposed method saves operations.
However, the overall complexity is still dominated by the
eigen-decomposition in both methods, which requires
computations.
Nevertheless, the computational reduction can become more

prominent when we go for multidimensional arrays [8], [10] or
higher order statistics [17]. For instance, in a -level nested
array [8], the ULA segment is of length so
that the corresponding spatially smoothed matrix has dimen-
sion . Following the same analysis as in this
subsection, the complexity for -level nested array becomes

while the proposed method has com-
plexity . It can be seen that operations
will be deducted using the proposed method, which is not
negligible especially for large . But still, eigen-decomposition
( ) governs the overall complexity.

IV. DISCUSSIONS

1) Note that is an indefinite square root of . The fi-
nite snapshot square root matrix implicitly appears in [21].
While it is not obvious, it can be shown that this ma-
trix in [21] is the same as the matrix in Theorem 1.
This matrix has been used in [21] for the convenience of
analysis of root-MUSIC in coarray domain. However, the
fact that coarray MUSIC can be obtained directly from an
eigen computation of the data-based matrix has not been
observed in the past. Instead of this matrix, the spatially
smoothed matrix has been used in all recent works [1]
and [5] for obtaining MUSIC spectrum.

2) Our approach is applicable to any sparse array that has
a ULA section in the coarray domain. For instance, the
minimum-redundancy arrays [22] and Golomb arrays [23],
[24] both satisfy such conditions. However, these arrays
do not have a simple formulation on the sensor locations,
which can only be obtained from table look-up [22], [23].

3) In [25], the authors proposed to construct a positive-defi-
nite Toeplitz matrix , based on the estimated covariance
matrices. The way that [25] establishes is identical to
Definition 3 in this paper. However, in [25], is restricted
to positive-definite Toeplitz matrices but here, is an in-
definite Toeplitz matrix. In addition, the goal of [25] is to
fill missing lags in . Nevertheless, in our work, all entries
of are known.

4) Our results are derived for finite snapshots. However, in the
proofs of [1], [5], infinite snapshots are assumed in making
the argument . Hence the statements here are
stronger than [1], [5]. For instance, Theorem 1 serves as a
finite-snapshot generalization of Theorem 2 in [1] as well
as Theorem 1 in [5]. To show that our proposed method is
consistent with [1], [5] under the infinite snapshot assump-
tion, taking yields and

Fig. 2. The MUSIC spectrum based on an , coprime array,
0 dB SNR, snapshots, and the Hermitian Toeplitz matrix .
sources are placed uniformly over . The number of sensors
is .

. According to Theorem 1, the
limit of becomes

where and follow similar definitions in [1], [5].
Note that is proportional to in [1], [5].

As an example, consider a nested array with
and a coprime array with and . The total

number of sensors is then 16, as defined in (1) and (2). SNR
is chosen to be 0 dB and there are snapshots.
sources are selected uniformly over in our
first experiment. As seen in Fig. 2, there are 35 distinguishable
peaks even though is greater than the number of sensors,

. These 35 peaks match with the ideal peaks, which
are marked by ticks on the axis.
The same configuration with 1000 runs is conducted for both
(spatial smoothing) and (no spatial smoothing). On a

Ubuntu 12.04 workstation with a Intel Core i7-2600 3.40 GHz
processor and 8 GBRAM, conventional approaches take 417.59
seconds for nested arrays and 85.73 seconds for coprime arrays.
Nevertheless, our new method spends 399.07 seconds (4.4%
reduction) for nested arrays and 75.02 seconds (12.5% less) for
coprime arrays.We see that the computational reduction is rather
minor. This is because, the computation time is dominated by the
eigenspace computation in the MUSIC stage. So, the computa-
tional advantageobtainedby replacing the spatial smoothing step
with thematrix isminor. However, the insight provided by the
fact that spatial smoothing can be avoided is more fundamental,
and might have theoretical impact in future developments. The
matrix also makes the performance analysis more tractable
(as compared to the use of the spatial smoothing matrix), as seen
from [21]. This is because, requires 4th order statistics,
whereas is in terms of 2nd order statistics (correlations).

V. CONCLUSION
We have shown that coarray MUSIC, which is used for

sparse arrays such as nested and coprime arrays can be per-
formed without the use of spatial smoothing. While there are
some computational advantages, the insight provided by the
simplification is also important, as it might lead to theoretical
simplification in future work.
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