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On the Null Space Constant for Minimization
Laming Chen, Student Member, IEEE, and Yuantao Gu, Member, IEEE

Abstract—The literature on sparse recovery often adopts the
“norm” ( ) as the penalty to induce sparsity of the signal
satisfying an underdetermined linear system. The performance of
the corresponding minimization problem can be characterized
by its null space constant. In spite of the NP-hardness of computing
the constant, its properties can still help in illustrating the perfor-
mance of minimization. In this letter, we show the strict increase
of the null space constant in the sparsity level and its continuity
in the exponent . We also indicate that the constant is strictly in-
creasing in with probability 1 when the sensing matrix is ran-
domly generated. Finally, we show how these properties can help in
demonstrating the performance of minimization, mainly in the
relationship between the the exponent and the sparsity level .
Index Terms—Continuity, minimization , monotonicity, null

space constant, sparse recovery.

I. INTRODUCTION

A N IMPORTANT problem that often arises in signal pro-
cessing,machine learning, and statistics is sparse recovery

[1]–[3]. It is in general formulated in the standard form

subject to (1)

where the sensing matrix has more columns than
rows and the “norm” denotes the number of nonzero
entries of the vector . The combinatorial optimization (1) is
NP-hard and therefore cannot be solved efficiently [4]. A stan-
dard method to solve this problem is by relaxing the non-convex
discontinuous “norm” to the convex norm [5], i.e.,

subject to (2)

It is theoretically proved that under some certain conditions [5],
[6], the optimum solution of (2) is identical to that of (1).
Some works try to bridge the gap between “norm” and

norm by non-convex but continuous “norm” ( )
[7]–[10], and consider the minimization problem

subject to (3)

where . Though finding the global optimal
solution of minimization is still NP-hard, computing a local
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minimizer can be done in polynomial time [11]. The global opti-
mality of (3) has been studied and various conditions have been
derived, for example, those based on restricted isometry prop-
erty [7]–[9], [12] and null space property [10], [13]. Among
them, a necessary and sufficient condition is based on the null
space property and its constant [10], [13], [14].
Definition 1: For any , define null space constant

as the smallest quantity such that

(4)

holds for any set with and for any
vector which denotes the null space of .
It has been shown that for any , is a

necessary and sufficient condition such that for any -sparse
and , is the unique solution of minimization [10].
Therefore, is a tight quantity in indicating the per-
formance of minimization ( ) in sparse recovery.
However, it has been shown that calculating is in
general NP-hard [15], which makes it difficult to check whether
the condition is satisfied or violated. Despite this, properties of

are of tremendous help in illustrating the perfor-
mance of minimization, e.g., non-decrease of in

shows that if minimization guarantees successful
recovery of all -sparse signal and , then mini-
mization also does [10].
In this letter, we give some new properties of the null space

constant . Specifically, we prove that
is strictly increasing in and is continuous in . For random
sensing matrix , the non-decrease of in can
be improved to strict increase with probability 1. Based on
them, the performance of minimization can be intuitively
demonstrated and understood.

II. MAIN CONTRIBUTION
This section introduces some properties of null space con-

stant . We begin with a lemma about
which will play a central role in the theoretical anal-

ysis. The spark of a matrix , denoted as [16], is the
smallest number of columns from that are linearly dependent.
Lemma 1: Suppose . For ,
1) is finite if and only if ;
2) For , there exist with

and such that

(5)

Proof: See Section III-A.
First, we show the strict increase of in .
Theorem 1: Suppose . Then for ,

is strictly increasing in when .
Proof: See Section III-B.
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Remark 1: For any , we can define a set of
all positive integers that every –sparse can be recovered
as the unique solution of minimization (3) with .
According to Theorem 1, contains successive integers
starting from 1 to some integer and is possibly empty.
Remark 2: If , then [16].

Therefore, if , .
Remark 3: For with identical column norms, if

and , then . To show
this, we only need to prove that . First, for
any and , since ,

where is the th column of . Since

with equality holds only when are all on the same
ray, which cannot be true since . Since

has identical column norms, holds, which
leads to because of Lemma 1.2).
Now we turn to the properties of as a function of
. The following result reveals the continuity of in
.
Theorem 2: Suppose . Then for ,

is a continuous function in .
Proof: See Section III-C.

Remark 4: Some works have discussed the equivalence of
and minimizations. In [17], it is shown that the sufficient

condition for the equivalence of these two minimization prob-
lems approaches the necessary and sufficient condition for the
uniqueness of solutions of minimization. In [7], it is shown
that for any -sparse and , if , then there
is such that is the unique solution of minimization.
This result is improved to which is optimal since it is
exactly the necessary and sufficient condition for being the
unique solution of minimization [12]. [18] shows the equiva-
lence of the - and the -normminimization problem for suffi-
ciently small . According to Theorem 2, we can also justify this
result: For any -sparse and , if ,
then there is such that and is the
unique solution of minimization.
Remark 5: In [10], the author defines a set of recon-

struction exponents, that is the set of all exponents
for which every -sparse is recovered as the unique solution
of minimization with . It is shown that is a
(possibly empty) open interval [10]. This result can
be easily shown by Theorem 2. Since is a non-de-
creasing [13] continuous function in , the inverse
image of the open interval ( ) is also an open interval of

. Therefore, the requirement that is equiv-
alent to .
Remark 6: For any , we can plot as a function of
, as shown in Fig. 1. For concision, we omit the argument
in the figure. It is obvious that is a step function de-
creasing from to . Three facts needs to be pointed
out. First, is right-continuous, which is an easy conse-
quence of Theorem 2. Second, the points corresponding
to the hollow circles in Fig. 1 satisfy . Third,
for the -axis of the points of discontinuity, the one-sided
limits satisfy . This

Fig. 1. The figure shows as a function of , where the argument is
omitted for concision.

Fig. 2. This figure shows a diagrammatic sketch of as a function
of for different when is a random matrix.

can be proved by Theorem 1 that if , then
.

Finally, we introduce an important property of as
a function of with regard to random matrix .
Theorem 3: Suppose the entries of are i.i.d. and

satisfy a continuous probability distribution. Then for ,
is strictly increasing in with probability

one.
Proof: See Section III-D.

Remark 7: It needs to be noted that there exists such that
is a constant number for all . For example,

for

(6)

. Since , it is easy to
check that for all , .
Remark 8: To sum up, we can schematically show

as a function of for different in Fig. 2. According
to Theorem 1, these curves are strictly in order without intersec-
tions. Theorem 2 reveals that is continuous in . For
a random matrix with i.i.d. entries satisfying a continuous
probability distribution, is strictly increasing in
with probability 1 by Theorem 3. According to the definition
of , the curves intersecting
are those with . According to the
definition of , the -axis of these intersections are ,

, , from left to right. Therefore, it is easy to
derive Fig. 1 based on Fig. 2 when is a random matrix.
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III. PROOFS

A. Proof of Lemma 1
Proof: 1) Since , contains an

-sparse signal, and it is easy to show that for any
, according to Definition 1. Next we

prove that for , is finite. Define

(7)

and which is a compact set.
Then it is easy to see that the definition of null space constant is
equivalent to

(8)

If is not finite, then there exists with
such that is not finite. Therefore, for any

, there exists such that

(9)

If , since is at least -sparse, it is easy to see
that holds for any . This contradicts
(9) when . If , according to Lemma 4.5 in [10],

, and (9) implies

(10)

Due to the compactness of , the sequence has
a convergent subsequence , and its limit also lies
in . Then (10) implies for , i.e.,
contains a -sparse element . This contradicts the assumption
that .
2) If , for any with and any ,

it holds that

(11)

On the other hand, since , contains
an -sparse signal with as its support set. For any

with , , and
therefore (5) holds.
If , recalling the equivalent definition (8), there

exists with such that

(12)

Since is compact and the function is con-
tinuous in on , it is easy to show that there exists

such that .

B. Proof of Theorem 1
Proof: We prove that when and ,

(13)

According to Lemma 1.2), there exist with and
such that

(14)

Since is at least -sparse, there exists an index
such that . Let , then

(15)

and hence

(16)

Recalling (14) and the equivalent definition (8), we can get (13)
and complete the proof.

C. Proof of Theorem 2
Proof: According to Theorem 5 in [13], is non-

decreasing in and therefore can only have jump dis-
continuities. We show this is impossible by two steps.
First, for any , we prove the one-sided limit from

the negative direction satisfies

(17)

According to Lemma 1.2), there exist with and
satisfying

(18)

According to the definition of , it is easy to show that

(19)

and then (17) holds obviously.
Second, for any , we prove the one-sided limit from

the positive direction satisfies

(20)

Since , there exists such that .
Then for , Lemma 1.2) reveals that there exist with

and such that

(21)

Since there are only finite different satisfying ,
there exists with such that an infinite subsequence
of is associated with . Due to the compactness
of , this subsequence has a convergent subsequence

, and its limit also lies in . According to the
definition of and (21),

(22)

and consequently . Since is non-
decreasing in , and (20) is proved.

D. Proof of Theorem 3
Proof: First, we show that with prob-

ability 1. Let denote the -dimensional vector space
of real matrices. For any , let
denote the subset of consisting of matrices of rank . It
can be proved that is an embedded submanifold of di-
mension in [19]. Consequently, for
matrices with i.i.d. entries drawn from a continuous distribu-
tion, the -dimensional volume of the set of singular ma-
trices is zero. In other words, any , or fewer,
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random vectors in with i.i.d. entries drawn from a contin-
uous distribution are linearly independent with probability 1. On
the other hand, more than vectors in are always linearly
dependent. Therefore, with probability 1.
Next, with the equivalent definition (8), we prove that for

and ,

(23)

holds with probability 1. According to Lemma 1.2), there exist
with and such that

(24)

Suppose has nonzero entries with as its support set,
then with probability 1. It is obvious that ,
and for any and any , . Since

, and therefore

(25)

Summing (25) with in and in , we can obtain

(26)

which is equivalent to

(27)

Since , it is easy to check that the equality in (27) holds
only when for all and all , i.e., the
nonzero entries of have the same magnitude. We prove that

contains such with probability 0, which together with
(24) imply that

(28)

holds with probability 1.
To this end, let denote the -dimensional

vector space of real matrices. For fixed with
, it can be easily shown that the subset

(29)

is an -dimensional subspace in . Therefore,
for with i.i.d. entries drawn from a continuous
probability distribution, contains with probability 0.
In , the number of vectors whose nonzero
entries have the same magnitude is

(30)

which is a finite number. Therefore, with probability 0,
contains a vector which makes the equality in (27) hold. That
is, is strictly increasing in with proba-
bility 1.

IV. CONCLUSION

In characterizing the performance of minimization in
sparse recovery, null space constant can be served
as a necessary and sufficient condition for the perfect recovery
of all -sparse signals. This letter derives some basic prop-
erties of in and . In particular, we show that

is strictly increasing in and is continuous in ,
meanwhile for random , the constant is strictly increasing in
with probability 1. Possible future works include the properties
of in , for example, the requirement of number
of measurements to guarantee with high
probability when is randomly generated.

REFERENCES

[1] R. Baraniuk, “Compressive sensing [lecture notes],” IEEE Signal
Process. Mag., vol. 24, no. 4, pp. 118–121, Jul. 2007.

[2] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. Patt. Anal. Mach.
Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.

[3] N. Meinshausen and B. Yu, “Lasso-type recovery of sparse represen-
tations for high-dimensional data,” Ann. Statist., vol. 37, no. 1, pp.
246–270, Feb. 2009.

[4] B. Natarajan, “Sparse approximate solutions to linear systems,” SIAM
J. Comput., vol. 24, no. 2, pp. 227–234, Apr. 1995.

[5] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency infor-
mation,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb.
2006.

[6] D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[7] R. Chartrand, “Exact reconstruction of sparse signals via nonconvex
minimization,” IEEE Signal Process. Lett., vol. 14, no. 10, pp.
707–710, Oct. 2007.

[8] R. Saab, R. Chartrand, and O. Yilmaz, “Stable sparse approximations
via nonconvex optimization,” in IEEE Int. Conf. Acoustics, Speech,
and Signal Processing, Mar. 2008, pp. 3885–3888.

[9] S. Foucart and M. Lai, “Sparsest solutions of underdetermined linear
systems via -minimization for ,” Appl. Comput. Harmon.
Anal., vol. 26, no. 3, pp. 395–407, May 2009.

[10] S. Foucart, Notes on compressed sensing for Math 394. Berlin, Ger-
many: Springer, 2009.

[11] D. Ge, X. Jiang, and Y. Ye, “A note on the complexity of minimi-
ation,” Math. Program., vol. 129, no. 2, pp. 285–299, Jun. 2011.

[12] Q. Sun, “Recovery of sparsest signals via -minimization,” Appl.
Comput. Harmon. Anal., vol. 32, no. 3, pp. 329–341, May 2012.

[13] R. Gribonval and M. Nielsen, “Highly sparse representations from
dictionaries are unique and independent of the sparseness measure,”
Appl. Comput. Harmon. Anal., vol. 22, no. 3, pp. 335–355, May
2007.

[14] L. Chen and Y. Gu, “The convergence guarantees of a non-convex ap-
proach for sparse recovery,” IEEE Trans. Signal Process., vol. 62, no.
15, pp. 3754–3767, Aug. 2014.

[15] A. Tillmann and M. Pfetsch, “The computational complexity of the re-
stricted isometry property, the nullspace property, and related concepts
in compressed sensing,” IEEE Trans. Inf. Theory, vol. 60, no. 2, pp.
1248–1259, Feb. 2014.

[16] D. Donoho and M. Elad, “Optimally sparse representation in general
(nonorthogonal) dictionaries via minimization,” in Proc. Nat. Acad.
Sci., Mar. 2003, vol. 100, no. 5, pp. 2197–2202.

[17] D. Malioutov, M. Cetin, and A. Willsky, “Optimal sparse represen-
tations in general overcomplete bases,” in IEEE Int. Conf. Acoustics,
Speech, and Signal Processing, 2004, vol. 2, pp. 793–796.

[18] G. Fung and O. Mangasarian, “Equivalence of minimal - and
-norm solutions of linear equalities, inequalities and linear programs

for sufficiently small ,” J. Optim. Theory Applicat., vol. 151, no. 1,
pp. 1–10, 2011.

[19] J. Lee, Introduction to Smooth Manifolds. Berlin, Germany:
Springer, 2012, vol. 218.

This paper previously published in IEEE Signal Processing Letters


