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Abstract—Structures play a significant role in the field of signal
processing. As a representative of structural data, low rank matrix
along with its restricted isometry property (RIP) has been an im-
portant research topic in compressive signal processing. Subspace
projection matrix is a kind of low rank matrix with additional
structure, which allows for further reduction of its intrinsic di-
mension. This leaves room for improving its own RIP, which could
work as the foundation of compressed subspace projection matrix
recovery. In this work, we study the RIP of subspace projection
matrix under random orthonormal compression. Considering the
fact that subspace projection matrices of dimensional subspaces
in form an dimensional submanifold in , our
main concern is transformed to the stable embedding of such sub-
manifold into . The result is that by
number of random measurements the RIP of subspace projection
matrix is guaranteed.
Index Terms—Compressive signal processing, low rank matrix,

manifold stable embedding, restricted isometry property, subspace
projection matrix.

I. INTRODUCTION

S IGNAL structure has always been a key point in the field
of signal processing. Structural data, such as sparse signal

and low rank matrix, have been important research topics in
compressive signal processing [1], [2]. These structures invoke
low intrinsic dimension, so the restricted isometry property
(RIP) can be established to guarantee both exact and robust
reconstructions from randomly compressed measurements [3],
[4], [5].
For a given dimensional linear subspace in an Euclidean

space , assuming that is less than , the subspace projec-
tion matrix is a low rank matrix with rather specific structure. In
fact, it is not only symmetric, semi-definite, but also has merely
eigenvalues 1 and 0. Such additional structure invokes lower in-
trinsic dimension than a general low rank matrix does, therefore
theoretical improvement on the RIP can be expected.
According to the basic ideas in compressive sensing [6], the

RIP of subspace projection matrix could work as the founda-
tion of compressed subspace projection matrix recovery. Con-
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sidering the fact that subspace projection matrix has a one to
one correspondence with subspace, the recovery from its com-
pression could be viewed as compressed subspace estimation.
Subspace estimation has been a concerning problem in signal
processing and computer vision. In some scenarios, such as face
recognition [7], motion segmentation [8], and visual tracking
[9], the objects belong to subspaces with much lower dimen-
sion than the ambient space. In fact, subspace estimation from
highly incomplete information has recently appeared as an at-
tractive research topic [10], [11], [12].
For subspaces with a given dimension in , their projec-

tion matrices form a manifold. There are significant and solid
works in manifold-modeled signal recovery from randomly
compressed measurements [13], [14], [15], [16]. These works
extend classic compressed sensing by generalizing low-dimen-
sion model from sparse signal to signal on low dimensional
manifold, and study stable manifold embeddings and nonadap-
tive dimensionality reduction of data on manifold. One of the
key ideas is to control the regularity of the manifold so that
it is well-conditioned. The work in [17] utilizes an instructive
quantity called the condition number of a manifold also known
as the reach of a manifold, which studies submanifold extrinsi-
cally and unveils its Riemannian geometry properties [18].
In this work, we aim to study the RIP of subspace projec-

tion matrix under random orthonormal compression. A matrix
manifold is used to model the set of subspace projection ma-
trices. By investigating the differential structure and the condi-
tion number of such manifold, we are able to conclude that by

random measurements the RIP of subspace
projection matrices is guaranteed.

II. MAIN RESULT
In this work, we study the RIP of subspace projection ma-

trices under random orthonormal compression.
Definition 1: The set of projection matrices corresponding to
dimensional subspaces in is defined as

(1)

in which denotes the column space of , and
is the Grassmann manifold of dimensional subspaces in .
Remark 1: Equation (1) is obtained by ortho-normalizing the

columns of while keeping fixed. Because different
choices of do not change as long as is fixed, we
have [19].
Remark 2: From Definition 1, we know that, for a linear sub-

space , its projection matrix is the matrix that a vector
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has to multiply when projected onto . This is the reason that it
is called a projection matrix.

is an dimensional submanifold in . The
following theorem describes the RIP of under random or-
thoprojector.
Theorem 1: For fixed and , assume that
. Let be a random orthoprojector with

(2)

If , then with probability exceeding ,
in which is a universal constant, the following property holds
for every pair of , ,

(3)

Proof: The proof is postponed to Section IV.
From Theorem 1, the number of measurements

is enough to guarantee the RIP under random or-
thonormal compression. For low rank matrices without further
specific structure, the number of measurements should be no
less than [4]. One may notice that when ,
the improvement from the latter to the former is not much. Al-
though it is true in that case, the result in Theorem 1does im-
prove the scaling law of the number of measurements on ,
and verifies the intuition that, compared with low rank matrices,
subspace projection matrices have additional structure which is
able to further reduce the number of compressed measurements
needed for reconstruction.
Heuristically, the scaling law is rea-

sonable, in that the degree of freedom of a subspace projection
matrix is . It should be highlighted that although The-
orem 1 is for an orthonormal random compression, the conclu-
sion could be naturally extended to random compressions satis-
fying the concentration property [20].
In the following text, the establishment of Theorem 1 will

be demonstrated. The first order differential structure and the
condition number of are studied in Section III, and then
Theorem I is readily proved in Section IV.

III. MANIFOLD OF SUBSPACE PROJECTION MATRIX

Matrix manifold has been a powerful tool to structural ma-
trix data recovery [21]. Typical matrix manifolds, such as the
Grassmannmanifold, the orthogonal group, and the Stiefel man-
ifold, have been comprehensively studied, and one may read
[22], [19], [23] for reference.
In this section, we study the set of subspace projection ma-

trices of dimensional subspaces in denoted as and
defined in (1). Because a subspace has a one to one correspon-
dence with a projection matrix, and such correspondence is con-
tinuous, is an dimensional manifold which is
homeomorphic to .
Preceding the calculation of the differential structure and the

condition number, we may first illustrate for specific
and . From the definition, we know that

Because , can be expressed as a circle with
radius as shown in Fig. 1.

Fig. 1. can be illustrated as a circle with radius .

A. Tangent Space and Normal Space of
In this part, we study the first order differential structure of
. The reason we need it is that the condition number, which

is an important quantity used for the stable embedding of a man-
ifold, will be defined by the normal bundle.
Denote as the set of all skew symmetric

matrices, and as the set of all symmetric ma-
trices. In the following lemma, the tangent space and the normal
space at every point of are unveiled. Remind that by stating

, it is indicated that .
Lemma 1: The tangent space of at a point

is

(4)

and the normal space is

(5)

is the matrix such that .
Proof: Denote the sets in (4) and (5) as and , respec-

tively, both of which are subspaces.
Suppose that is a curve on with

. The tangent vector along such curve at point
is

in which is a vector in . Because these tangent vec-
tors all belong to the tangent space of at , we have

To check that , notice that any symmetric matrix is orthog-
onal to any skew-symmetric matrix, and that
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The dimension of is

and the dimension of is , which is equal to the
dimension of . Therefore, we finish the proof that

and .

B. Condition Number of
For the purpose of delineating the regularity of a manifold, a

notion called the condition number of a manifold, also known
as the reach of a manifold [16], is introduced.
Definition 2: [17] Let be a compact Riemannian sub-man-

ifold of . The condition number is defined as , where is
the largest number having property that the open normal bundle
about of radius is embedded in for all .
The condition number controls both local properties,

such as the curvature of any unit-speed geodesic curve on
the manifold, and global properties, such as how close the
manifold may curve back upon itself at long geodesic distance
[18]. However, from its definition, the condition number of a
manifold is not easy to obtain in general. In this section, we
focus on the condition number of the manifold . In the
next section, we shall see that the following lemma is a key
step to the main result.
Lemma 2: The condition number of is .
Proof: The proof is based on the fact that is the radius of

the largest possible non-self-intersecting tube around the mani-
fold.
The distance between and the set of skew matrices is

, in that

Thus, if the tube around the manifold intersects itself at a point
of skew symmetric matrix, then the radius of the tube is no less
than .
For any and in , denote and

. If the tube around the manifold intersects
itself at a point of symmetric matrix , then
such that

(6)

Equation (6) is equivalent to the condition that and share
the same eigenvector matrix , and and share the same
eigenvector matrix , which is not necessarily to be the same
as . One of the eigenspaces of is corresponding to
eigenvalue 1, and the other one is corresponding to
eigenvalue . Thus, is composed of basis of and
basis of . Without loss of generality, we can assume
that and . Now we are able to prove
that if and , then (6)
can not hold.
First we consider the case where . Suppose that

(6) holds, and and .
According to the discussion in the previous paragraph, we have
that and

, in which , , and are diagonal matrices.
, in which the number of 1 is .

Both and have non-zero elements and zeros on
the diagonal. Observe that if the non-zeros of is the first
elements on its diagonal, then the non-zeros of can not be
the first elements on its diagonal. Otherwise, and span
the same subspace. Thus, a contradiction comes from the fact
that at least one of and holds.
The second case is . If (6) holds, then it is ob-

vious that and , so
and can not hold.

The third case is . Suppose that the eigen-
values of are . If (6) holds and

, then we must have
, and eigenvalues corre-

spond to the eigenspace . Since span span ,

so can not hold.
These three cases show that ,

, and (6) can not hold simultaneously. From the
discussion in the third case, it is obvious that

, , and (6) can hold simultaneously
by choosing

.
Consequently, for any , , if

and , their normal spaces
can not intersect at point . If and

, then there exists a at which their normal
spaces intersect. Thus, for , , and the condition
number is .
The condition number of provides the regularity of

this manifold, so its RIP is able to be derived.

IV. PROOF OF MAIN RESULT
Proof: Basically, Theorem 1 is proved by applying the con-

dition number of the manifold of the projection matrix ,
calculating the covering number of the set of chords of ,
and utilizing the Johnson-Lindenstrauss lemma.
The set of chords of a manifold is denoted as

(7)

From lemma C.1 in [13], we know that for any ,
the set is a -cover of , where
is defined as

(8)

in which is the -cover of , and
. It is easily shown

in Part B of the proof of Theorem III.1 in [13] that the -cover
of satisfies

(9)

Theorem 8 in [24] gives that the covering number of
Grassmann manifold is with being
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a universal constant. Remind that the projection distance on
is defined as

Thus, the covering number of is also
.

For any , there exist and
such that and

. We then have

(10)

and

(11)

Equations (10) and (11) together with Lemma 1.1 in [17]
(known as the Johnson-Lindenstrauss lemma) give that

(12)

and

(13)

Equations (12) and (13) hold simultaneously with probability
exceeding given that

From Lemma 2, we know that . Let ,
, and , then

Thus, we conclude that if

then ,
holds with probability exceeding

.
In order to control the probability above, we need a lower

bound on . Notice that

in which the last inequality holds when according
to Theorem 8 in [24], and is a universal constant. Because

, we have

Thus, the probability exceeding

V. CONCLUSION

Subspace projection matrices are low rank matrices with ad-
ditional structure that allows for further reduction of its intrinsic
dimension. In this work, the restricted isometry property of sub-
space projection matrix under random orthonormal compres-
sion is studied.
The set of dimensional subspace projection matrices

is modeled as an dimensional submanifold in ,
so the main concern is transformed to the problem of the stable
embedding of into . One of the key points is the
calculation of the conditional number of . Once is
obtained, the RIP is able to be established by applying covering
sets of the set of chords of and utilizing the JL lemma. In
order to calculate the condition number , the tangent space
and the normal space at every point of are investigated.
The result is that by measurements the RIP
of subspace projection matrix is guaranteed.
This work is not exhausted. The condition number of

provides the regularity of this manifold, so its RIP under
other random compressions, such as i.i.d. Gaussian compres-
sion, could also be established using such condition number.
Furthermore, theoretical analysis on algorithms for compressed
subspace projection matrix recovery could be built upon this
work.
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