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Abstract—Intra-prediction is employed in block-based image
coding to reduce energy in the prediction residual before trans-
form coding. Conventional intra-prediction schemes copy directly
from known pixels across block boundaries as prediction. In
this letter, we first cluster differences between neighboring pixel
pairs. Then, for each pixel pair, we add the cluster mean to the
known pixel for prediction of the neighboring unknown pixel. The
cluster indices are transmitted per block, allowing the decoder to
mimic the same intra-prediction. We then propose an optimized
transform for the prediction residual, based on a generalized
version of previously developed Graph Fourier Transform (GFT).
Experimental results show that our generalized intra-prediction
plus transform coding outperforms combinations of previous
intra-prediction and ADST coding by 2.5 dB in PSNR on average.
Index Terms—Graph signal processing, image compression.

I. INTRODUCTION

I NTRA-PREDICTION is a popular tool for video coding
since its adoption in the H.264/AVC standard [1]. In con-

ventional intra-prediction one or more decoded pixels from a
neighboring block (“boundary” pixels) are used to predict pixels
in the current block (“predicted” pixels). Assume for now that
only one boundary pixel is used, and denote and the inten-
sities of the boundary and predicted pixels, respectively. When
intra-prediction is used, the prediction residuals will be
transformed and encoded.
Intra-prediction is used in combination with techniques to

optimize the choice of prediction direction, essentially as-
signing different boundary pixels to different sets of predicted
pixels. Thus each specific intra-prediction mode corresponds to
choosing a subset of boundary pixels to be used for prediction.
For example, selecting a horizontal direction would lead to
predicting pixel rows using as boundary pixels only the ones
located immediately to the left of the block. Denoting a set of
pixels in the block that are predicted using , the corresponding
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residual energy would be . Pre-
diction directions, and thus the pairs, will be chosen to
minimize the total residual energy (the sum of all the
terms for the block1). The statistics of the resulting residual
block can be significantly different from those of the original
block (e.g., the mean of the residues for a block will tend to be
close to zero), leading to the use of the asymmetric discrete sine
transform (ADST) [2], which outperforms the discrete cosine
transform (DCT) for these residual blocks.
Existing intra-prediction approaches can select one of several

possible prediction directions, but, for each boundary pixel, ,
only two choices are possible: either is used as a predictor,
i.e., is computed for some , or is not used for pre-
diction. This simple prediction is useful when and the corre-
sponding set are part of a smooth region, but will tend to fail
in other cases. For example, poor intra prediction performance
may result if there exist discontinuities either at the block bound-
aries or within the block (especially when these discontinuities
have orientations orthogonal to the chosen prediction direction).
In such situations either intra-prediction will not be chosen or it
will perform worse than might have been possible with a better
predictor.
In this letter, we extend our approach in [3] to improve overall

intra-prediction performance in the presence of discontinuities.
In [3] we started by using simple thresholds to detect the pres-
ence of strong andweak discontinuities (edges) in an image. The
location and type of these discontinuities were then transmitted
as overhead and used to create a graph with edge weights cor-
responding to the correlation of pixel pairs across these discon-
tinuities. The graph Fourier transform (GFT) [4] corresponding
to the graph in each block was then used to transform the residue
data after intra-prediction.
In this letter we improve performance by: i) modifying

intra-prediction to take into account discontinuities occurring
at block boundaries, ii) optimizing thresholds to classify
the different types of discontinuities, iii) proposing a novel
generalized GFT (GGFT) optimized for intra-prediction
residues such as those generated with our approach. Our modi-
fied intra-prediction essentially allows us to introduce a small
number of additional predictors, which can be viewed as shifted
versions of the original predictor, i.e., is used instead of

for prediction, where will be conveyed as side information
(as in [3]). A clustering method is used to classify different
types of discontinuities, resulting in a different predictor for
each cluster. This is essentially an optimization of the threshold
selection in [3]. Our proposed GGFT is based on a generalized
Laplacian, where the diagonal terms corresponding to vertices

1In practice this decision is often made based on a criterion that incorporates
both residual energy and the rate required to encode the predictor assignment,
but this is not important for the purpose of this discussion.
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at block boundaries are modified: an extra weight is added
as a function of the expected inaccuracy of intra-prediction.
We show that, for the 1D case, the DCT and ADST [2] can
be viewed as special cases of our proposed GGFT design.
Using piecewise smooth and natural images as examples,
experimental results show that we outperform combinations of
previous intra-prediction and ADST coding by 2.5 dB in PSNR
on average.
Related work includes approaches that also consider

intra-prediction from a graph transform perspective [5], [6],
as well as mode-dependent directional transforms (MDDT)
[7]. Graph-based transforms for intra-prediction were intro-
duced in [8] and formalized in [5] under the assumption of
a Gauss-Markov random field (GMRF) model. In contrast
to [5], here we use a model that incorporates explicit signal
discontinuities. Further, the problem of identifying suitable
GMRFs from actual data in order to design these transforms
was not considered in [5]. Empirical models were derived in
[6] but, unlike those we propose here, these were unstructured
and the problem of representing them efficiently was not
considered. In contrast, our starting point is a simple model
of discontinuities between pixels, which does not require a
significant amount of side information to be conveyed to the
decoder. Finally, while MDDT [7] optimizes transforms for
different directional predictions in a data-driven fashion, we
allow different predictions and transforms as a function of
both directions and the presence of discontinuities at the block
boundaries. A significant advantage of our proposed techniques
is that by explicitly defining a sparse graph, they are amenable
to lower complexity graph-based transforms (e.g., based on
lifting [9], [10]). To the best of our knowledge, using the GGFT
as an image transform, and its interpretation as a generalization
of the DCT/ADST, has not been proposed before.

II. SIGNAL MODELING AND INTRA PREDICTION

A. Signal Modeling

We first model a 1D signal (one row of pixels) as:

(1)

where is an identical and independently distributed (iid)
random variable, and and are two neighboring pixels.
Fig. 1 shows two examples of log distributions of inter-pixel
differences—empirical estimates of the pdf for .
As observed in Fig. 1, inter-pixel difference distributions are

concentrated around 0 (i.e., images are mostly smooth), but oc-
casionally have large inter-pixel differences in both color and
depth images (e.g., around 10% of pixel pairs have inter-pixel
differences exceeding twice the standard deviation.)
If the encoder explicitly signals large inter-pixel differences
and their locations to the decoder, then can be subtracted

from signal at those locations, resulting in a smoother residual
signal for coding. However, signaling many different values
is expensive. Thus, we propose to quantize using quanti-
zation bins. Each bin is defined by its boundaries
and average . We compute the quantization bins via clus-
tering, employing the well-known Lloyd algorithm [11]. The
computed mapping , where is the index
of the bin assigned to , maps the observed inter-pixel differ-
ence to the bin average of cluster . The only change

Fig. 1. (a) The log histogram of for the natural image . (b) The
log histogram of for the depth map .

with respect to the standard Lloyd algorithm, is that for the
zero bin—the one containing the inter-pixel difference equal to
0—we assign as the centroid. By doing so, as will be
shown shortly, our prediction strategy will correspond to stan-
dard intra prediction when is mapped to the zero bin.
Assuming that the encoder will signal a bin index for

each pixel pair, the decoder can use the corresponding bin av-
erage to approximate and we can model the approxi-
mation error as a random variable , for each quantization
bin , so that the model of (1) can be modified as follows:

(2)

where a larger quantization bin for a given will lead
to increased variance of the error .

B. 1D Block-based Intra-Prediction
We now show how to use the model of (2) to perform intra-

prediction on a length- block given a
boundary pixel . At the encoder, we first map inter-pixel dif-
ferences to clusters according to the computed
bin boundaries . Without loss of generality, we assume that

, , and for the remaining
, as shown in Fig. 2(a), that is, there are two discontinuities,

one at the boundary and one between pixels and . We
can now expand (2) as:

...

...
(3)

which can be written in matrix form as:

(4)

where

. . . . . .

...

...

...

...

(5)
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Fig. 2. Intra-prediction in 1D (a) and 2D (b). Red circles denote boundary ver-
tices, and the blue ones represent vertices for the target block.

is invertible, thus

(6)

Note that

...

...

(7)

is the predictor for and that if we set , then
, i.e., the conventional intra-prediction.

Thus we can interpret as the intra-prediction residual .
is in fact the optimal predictor of for our given

model—any other predictor will yield non-zero expected pre-
diction error. To see this, we compute the expectation of
given for :

(8)

It can be derived similarly that for
, . Hence, is the optimal predictor in the

sense that it results in a zero-mean prediction residual.

III. GENERALIZED GRAPH FOURIER TRANSFORM
We first derive the inverse covariance matrix for

in (6), which leads to the KLT. Since , the
covariance matrix of the prediction residual is simply:

(9)
Further computation gives

(10)

The precision matrix , i.e., the inverse of , is a tridiagonal
matrix:

2Note that we are not claiming optimality of the 2D GGFT, and instead we
use the 1D analysis to provide insights to design the 2D approach, similar to the
approach followed in [2] for the ADST.

. . . . . . . . .

. . . . . . . . .

(11)

where and . Since shares the
same eigenvectors with [5], the KLT for residual signals, ,
is thus the eigenvector set of in (11). Note that, since the mul-
tiplier has no influence on the eigenvectors, we consider
without this factor in the sequel. Next we show that this KLT

is equivalent to the GGFT of a particular graph.
We construct an undirected graph composed

of a vertex set of cardinality , an edge set con-
necting vertices (each edge connects vertices and ), and
a weighted adjacency matrix . is a real symmetric

matrix, where is the weight assigned to . For
the 1D example of (11), as illustrated in Fig. 2(a), each vertex

corresponds to a pixel in the target code block, e.g.,
in Fig. 2(a); two vertices are connected with an

edge in if the corresponding pixels are neighbors in the target
block. We assign a weight if .
The combinatorial graph Laplacian [3], [8], [12] is defined as

, where is the degree matrix—a diagonal matrix
where . A generalized Laplacian is a sym-
metric matrix with non-positive off-diagonal entries [13], which
can be constructed, for example, as , where is
a diagonal matrix. The GGFT is then the orthogonal matrix of
eigenvectors of .
Using from the graph we just defined, we can write

, with . is defined by first iden-
tifying the set of boundary vertices (in the 1D case of (11)

is the only boundary pixel) and the set of boundary edges
(in this case a single connection between to ). will

be non-zero only for the diagonal positions corresponding to
vertices in connected to . Then, for a vertex , the corre-
sponding entry in will be equal to the additional degree
introduced by all boundary edges connecting to , i.e.,

, where is the weight assigned to the edge

connecting vertices and . Since is equal to a generalized
Laplacian, the corresponding GGFT is the optimal decorrelating
transform for the 1D case. Note that in the 1D case the DCT
and ADST can be viewed as special cases of this GGFT. The
GGFT defaults to the DCT [14] if and in (11).

means that the target pixel block is smooth.
means and and are disconnected; in this case
intra-prediction is not performed. Practically this occurs when
the inter-pixel difference across the block boundary is large. If

in (11), the GGFT is the ADST [2].
means the signal is smooth across the block boundary, so that
predicting by subtracting is effective [2].
Next, we propose the 2D GGFT design2. First, we build

a 4-connected graph connecting adjacent pixels in the target
block, as illustrated in Fig. 2(a) where pixels and links in
blue are defined as and respectively. Second, we connect
vertices in the first row and first column to boundary vertices
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1-hop from the target block, i.e., pixels and links in red in
Fig. 2(b) are defined as and . Then, for any two vertices
and that are neighbors in the 4-connected graph, ordered so

that is reached first in a standard raster scan of the block, we
define the corresponding weight , if .
We similarly define the weights of edges connecting nodes in

to nodes in as shown in Fig. 2(b), i.e., , if
, where and , and we define

as in the 1D case, by computing the additional degree of any
nodes connected to boundary nodes.
The computational complexity for the GGFT includes that

of: 1) eigen-decomposition of the graph Laplacian,
which is ; and 2) signal projection onto the GGFT basis,
which is . While not implemented here, the complexity
of the eigen-decomposition can be reduced by pre-computing
and storing the commonly used GGFT basis in a table for
lookup, as done in [3]. Further, the direct signal projection can
be approximated by a lifting transform, as done in [10].

IV. GGFT CODING SYSTEM
We use four clusters to capture correlations of pixel pairs:

strong correlation cluster ( ), two weak correlation clus-
ters ( , where ) and zero correlation
cluster (bins at two ends of the distribution). We assign graph
edge weights , , and , respec-
tively for each of the clusters. Note that the weights are forced
to be symmetric for bit rate reduction. For the zero correlation
cluster, we do not perform intra-prediction since in
this case.
We encode the clusters as follows. The zero and weak cor-

relation clusters typically occur across object contours, which
we losslessly encode on an image basis using arithmetic edge
coding (AEC) [15], [16] and send as side information. Further,
we encode extra bits to differentiate among zero correlation
cluster and positive / negative weak correlation clusters using
arithmetic coding.
We extend the 1D prediction in (7) to 2D as follows. We

first employ (7) to predict a block in horizontal and
vertical directions separately. We do not perform prediction
across zero correlation pixel pairs. If one pixel in the target
block contains both horizontal and vertical predictors, then
the average of the two predictors is used as the final predic-
tion. Our intra-prediction is analogous to planar prediction in
H.264 in the absence of discontinuities, and is used here as a
proof-of-concept. Note that in theory we can design a GGFT for
any prediction mode, including directional prediction, planar
prediction in H.264/HEVC, etc, where the correlations in the
prediction residual across pixel boundaries are incorporated as
edge weights in a graph to define appropriate GGFT. Finally,
we perform transform coding of the prediction residual
block using the GGFT (a matrix) as described above.
At the decoder, we first perform inverse quantization and

transform to reconstruct the residual block. Encoded side in-
formation is used to identify the transform and intra-prediction
chosen at the encoder. The block is then reconstructed by adding
the predictor to the residual block.

V. EXPERIMENTAL RESULTS
We use both PWS images (depth maps , [17]

and , and graphics images and [18])

Fig. 3. RD performance comparison among different compression schemes.
(a) Teddy (b) Tsukuba.

TABLE I
AVERAGE GAIN IN PSNR MEASURED WITH THE BJONTEGAARD METRIC

Fig. 4. The subjective quality comparison among different compression
schemes. (a)–(c) at 0.10 bpp. (a) eIntra+DCT (b) eIntra+GFT
(c) pIntra+GGFT.

and natural images ( , , ,
and [19]) for system evaluation. In the

training stage, we use the clustering method to compute
and for each test image, and estimate the corresponding
weights and .
We compare coding performance of our proposed intra-pre-

diction and GGFT ( ) against three compression
schemes: edge-aware intra-prediction [20] with the DCT
( ), with the ADST ( ), and with
the GFT ( ) constructed from the same graphs as
those used in the GGFT but without the extra boundary edge
weights added to the graph Laplacian. Fig. 3 presents the RD
performance of these schemes for and with a
typical PSNR range. More results are shown in Table I with
the average gain in PSNR measured by the Bjontegaard
metric. On average achieves 5.9 dB gain over

, 2.5 dB gain over , and 1.0 dB
gain over .
Fig. 4 shows images reconstructed from different schemes

for . produces images with the sharpest
boundaries and cleanest surfaces among all methods, with much
fewer blocking artifacts. This is due to the cluster-based intra-
prediction and GGFT.
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