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Interference-plus-Noise Covariance Matrix
Reconstruction via Spatial Power Spectrum
Sampling for Robust Adaptive Beamforming

Zhenyu Zhang, Wei Liu, Senior Member, IEEE, Wen Leng, Anguo Wang, and Heping Shi

Abstract—Recently, a robust adaptive beamforming (RAB) tech-
nique based on interference-plus-noise covariance (INC) matrix
reconstruction has been proposed, which utilizes the Capon spec-
trum estimator integrated over a region separated from the direc-
tion of the desired signal. Inspired by the sampling and reconstruc-
tion idea, in this paper, a novel method named spatial power spec-
trum sampling (SPSS) is proposed to reconstruct the INC matrix
more efficiently, with the corresponding beamforming algorithm
developed, where the covariance matrix taper (CMT) technique
is employed to further improve its performance. Simulation re-
sults are provided to demonstrate the effectiveness of the proposed
method.
Index Terms—Covariance matrix reconstruction, matrix taper,

robust beamforming, spatial power spectrum sampling.

I. INTRODUCTION

A DAPTIVE beamforming has found many applications
ranging from wireless communications, radar, sonar, and

speech processing, to medical imaging, radio astronomy, etc
[1], [2]. It is well-known that the performance of a standard
adaptive beamformer is sensitive to various array manifold
errors such as calibration error and direction of arrival (DOA)
estimation error for the signal of interest (SOI) [3], [4], [5],
[6]. As a solution, various robust adaptive beamforming (RAB)
techniques have been proposed in the past decades [1], [7].
The design principles of RAB based on the minimum variance
distortionless response (MVDR) criterion were illustrated in [8]
and the diagonal loading technique was studied in [5], while the
one based on the worst-case optimization was proposed in [9],
and steering vector estimation with presumed prior knowledge
for RAB was investigated in [10], [11].
In a recent RAB design [12], a method for estimating the in-

terference-plus-noise covariance (INC) matrix to eliminate the
power of SOI was proposed, where it first uniformly samples
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the spatial power spectrum over the full angular range from
to , and then reconstructs the INC matrix by sum-

ming up the values over a region separated from the direction
of the desired signal. A drawback of this effective RAB method
is its high computational complexity due to the large number of
samples involved in both spectrum estimation and matrix mul-
tiplication/summation. According to [12], it has a complexity of

with , where is the number of sensors and
the number of samples taken in the summation. Based on this

idea, a sparse method was proposed to estimate the INC matrix
to reduce the complexity in [13]. On the other hand, to deal with
unknown arbitrary-type mismatches, an uncertainty set was em-
ployed for INC matrix reconstruction in [10].
To further reduce the computational complexity of the RAB

method in [12], in this letter, a low-complexity INC matrix re-
construction method is proposed based on spatial power spec-
trum sampling (SPSS), and a corresponding beamforming algo-
rithm is developed. The spatial power spectrum sample opera-
tion is realized by a proposed sample equation which is derived
from the selecting property of the steering vector. The covari-
ance matrix taper (CMT) technique studied in [14] is employed
to improve the robustness as well as reinforce the sample equa-
tion due to a relatively small size of the array system in practice.
With the proposed method, the spatial power spectrum estima-
tion process in [12] can be avoided, making the SPSS based
algorithm computationally much more efficient. Simulation re-
sults will be provided to demonstrate the effectiveness and ro-
bustness of the proposed RAB method.

II. THE SIGNAL MODEL

Consider a uniform linear array (ULA) of (usually from
tens to hundreds [15]) omni-directional sensors, with a half
wavelength spacing. One desired signal arrives from the direc-
tion with a power of , while interfering signals impinge
upon the array from directions , , with their
corresponding powers given by . The complex array
observation vector at time can be modeled as

(1)

where , and are the statistically
independent components of the desired signal, interference and
noise, respectively, is the desired signal waveform, and

is its steering vector. The steering vector of the ULA has
the following general form

(2)
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Fig. 1. versus .

Let denote the theoretical covariance matrix of the array
output vector. Then can be expressed as follows:

(3)

where denotes Hermitian transpose, and is the noise
covariance matrix with representing the identity matrix and
the noise power. Alternatively, can also be formed through
the spatial spectrum of the array by

(4)

In practice, theoretical covariance matrix is usually unavail-
able and the sample covariance matrix (5) is used as an approx-
imation:

(5)

where is number of data snapshots.
Applying the complex weight vector
to the received signal vector , we obtain the beam-

former output , given by . The beam-
former output signal-to-interference-plus-noise ratio (SINR) is
defined as

(6)

where is the INC matrix.
Maximizing (6) subject to a unity constraint to the SOI direc-

tion leads to the following optimization problem

subject to (7)

and the solution is commonly known as theMVDR beamformer
or Capon beamformer [11]

(8)

III. THE PROPOSED METHOD

Recall the INC matrix reconstruction method given by [12]:

(9)

where is the Capon power spec-
trum estimator and is the angular region excluding the as-
sumed SOI region . The main computational cost is the in-
tegration approximation by summation, where (number of
sampled values) times spectrum estimation and vector multi-
plication operations have to be performed. In the following, by
analyzing the selecting property of the steering vector, we give
an efficient method to calculate this approximation without in-
curring the spectrum estimation process.

A. The Selecting Property of The Steering Vector, Sample
Matrix and Sample Equation
The inner product of two steering vectors is given by

(10)

where . Let
, then (10) can be

rewritten as , and can be
seen as a time-domain signal corresponding to an -point dis-
crete rectangular function in the frequency domain. So we can
obtain that

(11)

When is large enough, will approximate a sinc function,
i.e. . As

, unless is very close to , will be very large and
will have a very small value. Then we can conclude that

when is big enough, will approximate a Kronecker
delta function, i.e.

(12)

This is called the selecting property of the steering vector in this
letter. Fig. 1 shows the relationship between and the selecting
property of the steering vector.
Moreover, for equation (11), when , we have

; when
, we have . There

are such values in the set , i.e. has
zeros, and we denote them as , . As

, the zeros of , denoted
as , , can be easily obtained by as

.
Additionally, from (10), we can show that any two of the

steering vectors of are orthogonal to each
other. Therefore, the steering vectors of span
the -dimensional complex space.
Then, we define a matrix using :

(13)

where is a specified angular sector. When is large enough,
we have the result for the Hermitian matrix given
in (14), shown at the bottom of the page. From (14), we can
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see that when covers the whole region, can be
considered as an -point approximation to the covariance ma-
trix . We refer to , , and equation (14) as
watch points, sample matrix, and sample equation, respectively.
To estimate the INC matrix, we can remove the assumed angle
sector for SOI, i.e. let . Then an approximation of the
INC matrix can be obtained by , where

. In practice, since is not available,
we can replace by , i.e. .
In this way, we have avoided the estimation of the spa-

tial power spectrum in (9). However, when , there will
be a large error in the estimation by , because the se-
lecting property of the steering vector is not ideal and the watch
points spacing is not dense enough. To improve it, a taper oper-
ation is needed, as detailed in the next subsection.

B. SPSS INC Matrix Reconstruction
As just mentioned, for the estimation given in (14), when

is not large enough, the spacing between two adjacent watch
points may be too large to sample the power information of in-
terfering signals accurately. So we need to dither the power of
interferences to their neighborhood for robustness as well as for
the sample equation to catch more critical power information
of the interfering signals to some degree. To achieve this, the
covariance matrix tapering technique introduced in [14] is em-
ployed to modify the estimated INC matrix. In particular, we
here use the Malloux-Zatman (MZ) taper defined as follows
[14],

(15)

where corresponds to the width of the dithering area. For the
matrix , the ‘tapered matrix’ is given by , where “ ”
denotes the Hadamard product. As pointed out in [14], “the MZ
taper is equivalent to the introduction of a uniformly distributed
coherent phase dither.”
As for the choice of , it should satisfy a requirement that, for

a signal whose arriving angle is located between two adjacent
watch points, the power of the arriving signal should be dithered
to one of the adjacent watch points by the taper operation. In this
paper, is chosen.
Additionally, considering that the spectrum of the sampled

matrix is discrete, should be adopted again to dither the
power of watch points into their neighborhood to obtain a rel-
atively continuous spatial spectrum. And this finish the recon-
struction of INC matrix.

C. The SPSS-Based Beamforming Algorithm

Based on the discussions above, the proposed SPSS-based
beamforming algorithm can be described in four steps:
dithering, sampling, reconstructing, andweighting. Fig. 2 shows
the power spectrums of the output matrices in the first three
steps, where is used and the Capon power
spectrum estimator is adopted. It can be seen that the recon-
structed INC matrix can effectively restrain the power of SOI,
as well as maintain the information of interferences and noise.
1) Step 1: (Dithering) Specify a certain for to taper

the sample covariance matrix , i.e. .
2) Step 2: (Sampling) Develop the required sample matrix ;

then sample using the sample equation, i.e.
.

3) Step 3: (Reconstructing) Use in Step 1 again, to
dither the power of each watch point to its neighborhood,
and obtain a continuous spatial spectrum, i.e.

;
4) Step 4: (Weighting) Substitute the reconstructed INC ma-

trix and presumed DOA of SOI, , into the Capon
beamformer (8) to obtain the weight vector, i.e.

(16)

It can be seen that the main computational cost of the pro-
posed algorithm is the matrix inversion operation in Step 4.
Its overall computational complexity is in contrast to

with for the algorithm in [12]. As an ex-
ample to show the significantly reduced computational com-
plexity by the proposed method, we run the two algorithms
using MATLAB 2009a on a Windows XP SP3 PC with dual
core 3.07 GHz Intel Core i3 CPU and 3.36 GB memory. With

, , and , the required CPU time for the
beamformer in [12] is around 14.6 ms, while it takes the pro-
posed one only about 0.6 ms with no code optimization.

IV. SIMULATION RESULTS

In our simulations, we consider a ULA with omni-
directional sensors, with zero-mean and unity variance spatially
and temporally white Gaussian noise. Two interfering sources
with random waveforms arrive from DOA angles of and

, respectively. The interference-to-noise ratio (INR) at
each sensor is 30 dB. The desired signal impinges on the array

(14)
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Fig. 2. Effect of the first three steps in the SPSS algorithm.

Fig. 3. First example: (a) Output SINR versus input SNR; (b) output SINR
versus number of snapshots.

from the presumed direction . For each simulation, 500
Monte-Carlo runs are performed.
Our proposed SPSS-based beamformer is compared with the

worst-case-based beamformer [9], the beamformer in [16], the
sequential quad-ratic programming (SQP) based beamformer in
[17], and the beamformer in [12]. For the SPSS-based beam-
former and the beamformer in [12], the general angular loca-
tion of the desired signal is assumed to be within the interval

; is used in (10) 1, and
is used in (15). The value and 20 dom-

inant eigenvectors of the matirx are
used in the SQP based beamformer, while is used for
the worst-case-based beamformer.

A. Example 1: Random Direction Mismatch for SOI and
Interference
In this example, the direction mismatch error is assumed to

be randomly and uniformly distributed in for both

Fig. 4. Second example. Output SINR versus number of sensors.

the SOI and interferences as in [12]. is kept at 300 to cal-
culate the integration in the beamformer [12]. Here the random
DOAs change from run to run but remain fixed from snapshot to
snapshot. Fig. 3(a) depicts the output SINR of the beamformers
versus the input SNR. The number of snapshots is fixed to be

. It can be seen that the performance of the
SPSS-based beamformer is very close to that of the beamformer
in [12] and outperforms the other beamformers when SNR is
larger than 0 dB. In Fig. 3(b), the output SINR is shown with
respect to the number of snapshots , with a fixed SNR for the
desired signal at 10 dB. Again the proposed beamformer has a
similar performance to the beamformer in [12], but much better
than the remaining ones.

B. Example 2: Performance Versus Number of Sensors

In the second example, we compare the performance between
the SPSS-based beamformer and the beamformer in [12] against
the number of sensors. Considering the same mismatched situ-
ation in Example 1, we vary from 20 to 80, while the SNR
of SOI and are kept at 20 dB and respectively. In all the
simulations, is chosen to get the best performance for
the beamformer in [12]. It can be seen from Fig. 4 that, when
using 22 or more sensors, the deviation between the two beam-
formers is within 0.7 dB, which means the approximation by our
proposed beamformer has been good enough to reach a similar
performance to [12], but with a much lower computational com-
plexity.

V. CONCLUSION

In this letter, an SPSS-based method has been proposed
to reconstruct the INC matrix in a computationally efficient
way, with the corresponding robust beamforming algorithm
developed. The computational complexity of the proposed
beamformer is , which in general is much smaller than

of a previously proposed reconstruction
method. In particular the spatial spectrum estimation process
has been avoided. Simulation results have demonstrated that the
proposed beamformer can achieve a very similar performance
to its high-complexity version.

1Note that for the choice of , it can take any value as long as at least one
watch point (as a result of the choice of ) is within the desired angular
sector . When this is satisfied, the power of SOI will be excluded in the re-
constructed INC matrix.
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