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Music Annotation and Retrieval using Unlabeled
Exemplars: Correlation and Sparse Codes

Ping-Keng Jao and Yi-Hsuan Yang, Member, IEEE

Abstract—Tagging music signals with semantic labels such as
genres, moods and instruments is important for content-based
music retrieval and recommendation. While considerable effort
has been made, automatic music annotation is still considered
challenging due to the difficulty of extracting good audio features
that capture the characteristics of different tags. To address this
issue, we present in this letter two exemplar-based approaches
that represent the content of a music clip by referring to a large
set of unlabeled audio exemplars. The first approach represents a
music clip by the set of audio exemplars that is highly correlated
with the short-time feature vectors of the clip, whereas the second
approach represents a music clip as sparse linear combinations
of its short-time feature vectors over the audio exemplars. Music
annotation is then performed by learning the relevance of the
audio examples to different tags using labeled data. These two
approaches effectively capitalize the availability of unlabeled data
to explore the commonality of music signals to find out tag-spe-
cific acoustic patterns, without domain knowledge and feature
design. Evaluation on the CAL10k music genre tagging dataset for
tag-based music retrieval shows that, with thousands of unlabeled
audio examples randomly drawn from the Million Song Dataset,
the proposed approaches lead to remarkably higher precision
rates than existing approaches.

Index Terms—Music tagging, retrieval, sparse representation.

I. INTRODUCTION

UTOMATIC music annotation, a.k.a. music autotagging,

refers to the task of automatically assigning semantic labels
(tags) such as genres, moods, and instruments to music objects
(e.g. artists, albums, tracks, or segments of a track) so as to facil-
itate applications such as tag-based retrieval, similarity search,
recommendation, and visualization [1]-[7]. In the past decade,
a great effort has been made to use supervised machine learning
algorithms to map signal-level audio features extractable by ma-
chine (e.g. temporal or spectral features) to high-level semantic
labels using manually pre-labeled training samples [8]-[16]. The
task, however, remains challenging due to the following three
issues: the scarcity of well-labeled training data [17], [18], the
complexity involved in formalizing and evaluating the task while
taking care of possible confounds [18], [19], and the difficulty
of extracting good audio features that capture the characteristics
of each tag [20]-[24]. Good feature design is hard to come by,
for example for tags that are social and cultural constructs
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(e.g. genres [25]). The goal of this letter is to address the last
issue by proposing novel ways of computing audio features.

Our approaches are motivated by the success of exemplar-
based approaches for pattern recognition [26]-[30]. The idea is
to build a local classification model from a few relevant pre-la-
beled training samples for each test sample, instead of deriving a
single global model from all the training samples before the test
sample is seen [30]. For instance, the k-nearest neighbor (kNN)
algorithm classifies a test sample by the majority vote over the
labels of its k£ nearest training samples in a given feature space
[26]. The sparse representation-based classification (SRC) algo-
rithm approximates a test sample by a sparse linear combination
with respect to an overcomplete dictionary comprising of all the
training samples, and then performs classification by evaluating
which class-specific sub-dictionary (i.e. training samples from
the same class) leads to the minimal coding residual [27]. As
the sparse representation is given by a small number of rele-
vant training samples, it is likely to consist of samples from the
same class. Comparing to kNN, SRC does not fix the number
of neighborhood training samples chosen, and appears to be a
more robust classifier. It has been shown that SRC performs well
even in the presence of occlusion or corruption in face and ob-
ject recognition [28], and noises in speech recognition [29].

The aforementioned two algorithms, however, are not readily
applicable to music autotagging for the following reasons. First,
existing labeled datasets for music autotagging usually assign
tags to 10-30 seconds clips, if not the whole tracks [7]-[11],
whereas audio features are usually extracted over short-time
analysis windows referred to as frames, over which the signal
is considered as stationary [31]. As a clip can consist of hun-
dreds or thousands of frames, directly using frame-level fea-
tures as exemplars would result in exceedingly large number
of potentially redundant exemplars. Moreover, frame-level fea-
tures from different tags may resemble one another, limiting the
discriminative ability of the classifier. On the other hand, de-
signing effective temporal integration algorithms that summa-
rize the content of successive frames in the clip or chunk (e.g.
per second) level remains difficult [31], especially for tags that
apply to only short fragments of a clip (e.g. the tag ‘guitar solo’).
Second, as a music object can be associated with not only one
but multiple tags, the idea of class-specific subdictionary be-
comes vague. It is uncertain which tags are relevant if the sparse
linear approximation of a test sample involves training samples
associated with multiple tags.

In light of the above observations, we propose to leverage
the abundance of unlabeled data as exemplars in an overcom-
plete dictionary to compute the feature representations, and then
use labeled training data to learn a discriminative classifier for
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music autotagging, using the computed feature representations.
The dictionary is formed by frame-level feature vectors ran-
domly drawn from a large and diverse set of unlabeled music
clips, so as to avoid losing short-time audio information by tem-
poral integral and the redundancy of using feature vectors from a
limited number of clips. The unlabeled exemplars provide a uni-
versal basis to represent frame-level music content. We can then
compute feature representations for both the training and test
samples by referring to this dictionary, and use algorithms such
as the support vector machine (SVM) [32] to learn a classifier.
As the classification is performed on a feature representation
comprising of unlabeled exemplars, the classification algorithm
is actually learning the relevance of the exemplars to each tag,
and the prediction for a test sample actually depends on the set of
exemplars in the dictionary that are relevant to that test sample.
As the exemplars themselves are used to represent music con-
tent, this approach does not involve much feature design.

As embodiment of the aforementioned idea, we propose two
exemplar-based approaches to audio feature computation. The
first approach resembles the idea of kNN and represents a music
sample (i.e. a clip or a track) by a binary vector indicating the
subset of exemplars in the dictionary that are most correlated with
the frame-level feature vectors of the music sample. The second
approach resembles the idea of SRC and represents a music
sample by the sparse representation of its frame-level feature
vectors with respect to the dictionary. Accordingly, the first ap-
proach assumes two samples share similar tags if their short-time
features are correlated with similar sets of exemplars, whereas
the second approach assumes two samples share similar tags if
their short-time features can be approximated by similar sparse
linear combinations of the exemplars. The multi-label classifi-
cation problem of music autotagging is cast to multiple binary
classification problems [33], using one linear kernel SVM for
each tag to predict the relevance between a tag and a test sample.
Evaluation on a music autotagging dataset for tag-based music
retrieval (a.k.a. query-by-tag) [12]-[15] shows the superiority of
the proposed approaches over prior arts in the precision rates.

II. PROBLEM STATEMENT

We are given a labeled dataset { X, y;}._, with [ clips (or
tracks) and an unlabeled dataset { X, i}ii}”ﬂ with u clips, where
X, = {XEU, e ,XETi)} is a collection of p-dimensional frame-
level feature vectors xgt) € RP? for the clip with 7; short-time
frames, and y; € {0,1}9 is a label vector indicating which of
the g possible tags can be applied to the corresponding clip.
The problem of music autotagging is to learn a function fx, :
RP>7i 5 {0, 1}9 from the labeled dataset.

The main idea of the proposed approach is to employ an
overcomplete dictionary D € RP*™ composing of m > p
frame-level feature vectors d; € R? randomly drawn from the
unlabeled dataset {Xi}ﬁiluﬂ, such that we can use D to com-
pute exemplar-based clip-level representation ¥; € R™ that
nicely captures the audio characteristics for each X;. Using the
new representation, we learn a function f, : R™ — {0,1}¢
from the labeled dataset for autotagging. In this letter, this is
achieved by learning ¢ binary classifiers, one for each tag.

Without loss of generalizability, we drop the subscript ¢ for
the index of clips in the following discussion. Moreover, we
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assume the frame-level feature vectors are normalized to unit
energy (i.e. |[x|)s = ||d;|lz = 1). We use bold upper case to
represent matrices and bold lower case for column vectors.

III. EXEMPLAR-BASED CORRELATION CODES

We can measure the linear dependence between two variables
by the Pearson product-moment correlation coefficient. As the
frame-level feature vectors are normalized, the correlation be-
tween x(*) and an exemplar d; is given by

r{ =dfx, )

where 7 > 0 implies that the two vectors are pointing into the
same half-space of RP, = %1 indicates they are in the same or
opposite direction, and » = 0 if they are orthogonal. To obtain
a clip-level representation for X, we first calculate the frame-
level binary indicator vector o® € R™ for each x():

ol = (h(r?) — 09),, @)

where ¢ denotes the jth element of &®), h(-) is a mapping

function such as h(z) = z or h{z) = |z| (i.e. considering both
positive and negative correlation), the operator (z)4 returns 1
if z > 0 and 0 otherwise, and 8*) is a threshold controlling
the number of dictionary atoms considered as relevant to x(*).
Then, we compute the clip-level feature representation ¢ by

v=(X 000, ®

+

where the scalar ¥ decides the number of non-zero elements in
1p°. There are at least two possible methods for setting ¥:

* Union-based: we set ¥ = 1 as long as d; is consid-
ered relevant to at least one of the input frames (i.e. It €
1, 7], O'J(-t) > 0). This is equivalent to setting ¥ = 0.

* Voting-based: we set 9§ = 1if 3, a](-t) is among the
top k ones for j € [1,m], or, equivalently, when d; is
considered relevant to sufficiently large number of input
frames. This can be achieved by properly setting 4.

The voting-based method allows for exactly the same number
(i.e. k) of non-zero elements in v for different clips, while the
union-based method adaptively uses different number of non-
zero elements according to signal complexity and variability.
We refer to ¢ as the exemplar-based correlation codes (ECC).

Remark on Efficiency: The operations of computing a clip
is almost linear in the m and 7 of that clip. Computing (1) is
already fast, but it can be made even faster by exploiting the
identity |la — b||2 = |/al|3 + ||b||3 — 2aTh and the fact that
the frame-level feature vectors have been normalized; since the
exemplar with the largest correlation to an input is also the one
with the smallest Euclidean distance to the input, one can use
nearest-neighbor search algorithms such as &-D Tree and PCA
Tree [34] to speed up the computing of ECC.

IV. EXEMPLAR-BASED SPARSE CODES

It has been shown that a sparse linear approximation of an
input x*) with respect to a dictionary D can be calculated by
solving the following /; -minimization problem [35]-[37]:

1 ;
o) = argmin _ |x® —Dali + Mefy, @)
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where & € R™ is the combination (or activation) coefficients
and the parameter A controls the tradeoff between the re-
construction error ||x(*) — De|? and the sparsity-promoting
ly-regularizer [lrl|; = 37, |oj|. Many optimization algo-
rithms have been proposed to solve this problem [38]-[40].
In this letter, we employ the homotopy-based least angle re-
gression and shrinkage (LARS)-Lasso algorithm [41] for its
demonstrated efficiency and effectiveness for pattern recog-
nition problems [38]. The clip-level representation for X is
obtained by taking the average across the coefficients a) for
each frame x(*),

1 7
s _ 2 (t)
’(’b T Zt:l Q.

Taking the average would preserve short-time music character-
istics, because 15 # 0 as long as the corresponding exemplar
d; is chosen in the approximation of at least one of the input
frames (i.e. It € [1, 7], ag«t) > 0). Our pilot study shows that
this mean pooling is better than sum or max pooling [23]. We
refer to 1»° as the exemplar-based sparse codes (ESC). Please
note that ECC is a binary representation, but ESC is not.

Remark on Efficiency: Using LARS Lasso with a Cholesky-
based implementation, the time complexity of computing c*)
is O(pme + mu?) [42], [43], where ¢ is the number of iterations
needed to reach a local minimum and in general ¢ equals to the
number of non-zero elements in a®) and © < min(p, m) = p.
A number of algorithms have been proposed in the literature for
better efficiency. In this letter, we extend the frame-level Lasso
screening algorithm proposed by Xiang et al. [42], [43] to the
clip-level for speeding up, as described below.

(6))

A. Clip-level Lasso Screening

The idea of Lasso screening is to adaptively reduce the size
of the dictionary D for each input x(*) by removing atoms that
are unlikely to be non-zero in a*) [43]. It has been proven that
we can remove d; from D if the following inequality holds,
without affecting the optimal solution of (4) [42]:

-V i=1,  (6)

where 7. = max;|r;| and d, € {+d;}}2, is the possibly
negated dictionary atom that leads to r.. As this algorithm is
designed to find a frame-specific subdictionary D) C D for
each x| we refer to it as frame-level Lasso screening.

In practice, however, we found that frame-level screening
cannot accelerate the computation of ESC for two reasons [44].
First, the inequality (6) is seldom met as r, is usually large (i.e.
at least some atoms are highly correlated with the input) and A is
usually small (e.g. A is usually set to p~ /2 in solving (4) [45]).
In consequence, the size of the subdictionary remains large.
Second, using 7 different subdictionaries demands 7 times of
memory transfer efforts for each clip, which is not memory ef-
ficient. Given the repetition nature of music, it is advisable to
find a clip-specific subdictionary DcDto compute the o)
for all the frames in the same clip.

Irj — (re — A)dj dy| < X = (1.
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We propose to achieve this by borrowing the idea of ECC
described in Section II1. Specifically, since the ECC ¢ is a bi-
nary vector indicating the dictionary atoms that are deemed rel-
evant to the input clip X, we can use the indices Z C [1,m)]
of the non-zero entries in 9 to sample the columns of D and
form a clip-specific subdictionary D, whose size is equal to
the cardlnahty of Z (i.e. number of non-zeros entries in ).
We use D to solve for a( ) e RI7I by LARS-Lasso for every
frame of the clip, get the clip-level representation by 1,bs =
1 Zt 1 a and finally obtaln ws € R™ by taking the values
correspondlng to Z from ws and filling zeros for the other in-
dices (i.e. [1,m]—T). Due to the last upsampling step, the repre-
sentation * of every clip lies in the same feature space spanned
by the m unlabeled exemplars in D. We refer to the aforemen-
tioned idea of using the same D for all the frames in a clip as
clip-level Lasso screening, and the resulting 1/° as approximated
ESC (AESC).

Remark on Efficiency: As the complexity of LARS-Lasso

is linear in the dictionary size, the computation of AESC
is supposed to be faster than ESC by m/|Z| folds (note
this value is clip-dependent), assuming that the runtime of
computing ECC is neglige comparing to that of solving (4).
According to (3), we see that the value of |Z| depends on the
value of 1. We refer readers to the Table I and Fig. 1 in [44]
for evaluation of the actual runtime of the encoding stage of
ESC and AESC.
__Remark on the Difference Between ESC and AESC: Because
D is not constructed by using theoretically motivated rules [43]
such as (6), clip-level Lasso screening can affect the solution of
(4). In general, DOLg cannot approximate x(*) as well as Da(t)
does, and 1° # 16°. Nevertheless, it may be fine to use ¢S as
the goal is to obtain a feature representation for classification,
not for perfect reconstruction of the input.

Remark on the Frame-Level Indicator Vector of ECC:
Finally, we note that the way we construct the frame-level
indicator vector aj(»t) of ECC in (2) can be connected with the
frame-level Lasso screening rule in (6). For example, if we set
A = ry, the rule (6) would reduce to |r;| < r., which implies
only the exemplar that has the maximal absolute correlation
with the input frame would be kept. This is equivalent to using
h(z) = |z| and selecting only the maximal absolute correlated
exemplar in (2). Although such a screening rule may seem
stringent, it is fine as the clip-level 4¢ (and D) is formed by
taking into account all the frames in the clip. From (4) we also
see that setting \ to r, instead of the smaller p—1/2 stresses
more on the sparsity of a'®) than the reconstruction error.

Remark on the Use of Sparse Codes in Audio: Sparse
representation of audio signals has received much attention
in recent years for its excellent empirical performance in
classification and retrieval problems [21]-[24]. Different
dictionary learning algorithms (i.e. to optimize D) [39],
encoding methods (i.e. to solve for x(*)) [23], [46], and tem-
poral pooling methods (i.e. to get °) [16], [47] have been
proposed and compared. The focus of this letter, however, is
to investigate efficient ways of exploiting unlabeled exemplars
themselves as the dictionary atoms, a topic that is seldom
addressed before.
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V. EXPERIMENT

Our evaluation uses the Million Song Dataset (MSD) [48] as
the unlabeled dataset and the CAL10k (a.k.a. Swat10k) dataset
[10] as the labeled dataset. MSD is a publicly-available collec-
tion of audio features and metadata for a million contemporary
popular music tracks. To construct a dictionary of size m, we
pick m random clips from MSD and randomly draw one exem-
plar from each clip. Due to the size and diversity of MSD, these
exemplars are assumed to provide an adequate basis for the dic-
tionary. CAL10k, on the other hand, consists of the human an-
notation of 147 genre tags for 10,267 songs. Popular tags with
around 1,000 positive samples include genres such as ‘Rock,’
‘Jazz’ and ‘Pop,” whereas less popular tags (e.g. with less than
200 positive samples) are usually sub-genres, radios or musical
events. The proposed approaches bypass the difficulty of fea-
ture design for these tags, as the exemplars themselves may al-
ready represent characteristics such as sound quality, playing
techniques, recording environment, etc.

The short-time signal-level feature representation x*) can be
obtained by extracting for example the magnitude spectra or
the Mel-frequency spectra from audio signals [14], [23]. In this
work, we use the 12-D timbre descriptors (ENT) and 12-D pitch
descriptors (ENP) computed by the Echo Nest API as the short-
time features. ENT is a descriptor of the magnitude spectra and
ENP is chroma-like [49]. To incorporate temporal information,
we also take their 1st- and 2nd-order instantaneous derivatives
[10], leading to 36-D timbre (ENTA) and 36-D pitch descrip-
tors (ENPA). Using these features encourages reproducibility,
because everyone can obtain the features by querying the API
with the artist names and song titles, without having the audio
files for MSD or CAL10k.

We use the five training and testing splits specified in [10] for
CAL10k and report the average result. We use the linear SVM
implemented by LIBLINEAR [32] and train ¢ = 147 binary
classifiers, one for each tag, with parameters optimized by cross
validating on the training split. Instead of evaluating the per-
formance of music annotation, we directly evaluate the perfor-
mance of using the predicted tags for tag-based music retrieval
[12]-[15], in terms of the area under the receiver operating char-
acteristic curve (AUC), mean average precision (MAP) and pre-
cision at rank 10 (P10). The values for these metrics all fall
within [0,1], and larger values indicate better performance. For
each tag, we rank the test clips in descending order of the deci-
sion values computed by SVM and calculate the above measures
according to the ranking [16]. We select only one exemplar for
each frame in (2) with h(z) = |z|, and use the voting-based
method in (3), such that |4°|; = |Z| = max(m/10,p). More-
over, we set X to p~ /2 in (4) [45].

Table I compares the performance of ECC, ESC and AESC,
using ENT A and ENPA to build two m-atom dictionaries and
concatenating the resulting two representations /s for each clip
for training the classifier. We see that the performance of the
three algorithms increases as the dictionary size m grows, for
all metrics. We also find that ESC performs the best among the
three, and that AESC outperforms ECC when m > 4, 000.

Table II compares AESC with existing approaches, using
only ENTA as the short-time feature. We see that AESC
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TABLE 1
PERFORMANCE OF MUSIC ANNOTATION AND RETRIEVAL ON CALI10K,
USING BOTH ENTA AND ENPA AS SHORT-TIME FEATURES

I ECC ESC AESC

AUC MAP PI0O [ AUC MAP PI0O | AUC MAP PI0
128 | 0.859 0.214 0279 0.879 0.241 0.305| 0.848 0.201 0.263
250 | 0.866 0.232 0.295| 0.884 0.258 0.323| 0.850 0.206 0.272
1k |0.871 0246 0315| 0.888 0.275 0.342| 0.862 0.236 0.301
2k | 0.872 0.253 0.323| 0.892 0.286 0.353| 0.869 0.253 0.319
4k | 0.874 0.260 0.330| 0.892 0.290 0.354| 0.876 0.265 0.334
10k | 0.872 0.262 0.328| 0.894 0.298 0.368| 0.884 0.279 0.348
20k | 0.873 0.261 0.325| 0.895 0.301 0.370| 0.891 0.296 0.368

TABLE II

PERFORMANCE COMPARISON BETWEEN AECS (ENTA) WITH PRIOR
ARTS FOR MUSIC ANNOTATION AND RETRIEVAL ON CAL10K

Approach AUC MAP P10
AESC, ENTA, m = 250 0.836  0.187 0.247
AESC, ENTA, m = 1k 0.851 0.221 0.283
AESC, ENTA, m = 4k 0869 0249 0312
AESC, ENTA, m = 20k 0.884 0.279 0.349
random guess [10] 0.501 0.018 0.015
GMM, ENTA [10] 0.887 0.211  0.266
HEM-DTM, Mel-spectra [12] | 0.870  0.140  0.180
SC, magnitude spectra [16] 0.854  0.202 0.253
SC, Mel-spectra [24] 0.874 0.195 0.246
037 e Al
0.25p,
(&) o 0.2%
3 =@~ no normal. <§f
—©—L1 0.151 —©—L1
0.8} --&--2nd root =N 2nd root
—A—L1+2nd root —A—L1+2nd root D
e 3rd root 017 . 3rd root

—+— L1+3rd root &

0.75
128250 1k 2k 4k 10k 20k
dictionary size m

—+— L1+3rd root

0.05
128 250 1k 2k 4k 10k 20k
dictionary size m

Fig. 1. Performance of music annotation and retrieval on CAL-10k, using both
ENTA and ENPA features for computing ESC but different normalization
methods before classifier training.

obtains much higher precision rates (i.e. MAP and P10) than
the state-of-the-art [10] when m > 1,000. From Tables I and
I1, we also see that even the simplest ECC can outperform the
prior arts in MAP and P10, validating the use of the exemplars.
The proposed approaches are on par with prior arts in AUC.

Finally, Fig. 1 shows the effect of applying different normal-
ization methods on ESC, before using it for classifier training:
L1 (3° < 4°/|4°]1), 2nd root (1} < ,/¥%) and 3rd root
(3 + {/¥5). We see that both the 2nd and 3rd root power nor-
malization improve the performance of ESC, especially when
the dictionary size is large. A possible reason is power normal-
ization can improve the noise robustness of the resulting repre-
sentation [50]. The results of ESC and AESC in Tables I and
IT are those with L1 and 2nd root normalization.

VI. CONCLUSION

In this letter, we have presented approaches to compute ex-
emplar-based representation for music, and shown that high pre-
cision rates in tag-based music retrieval is obtained by using the
representation to train simple linear SVMs. The proposed ap-
proaches are easy to implement, conceptually intuitive, and may
be applied to other temporal signals beyond music.
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