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Estimating Parameters of Optimal Average and
Adaptive Wiener Filters for Image Restoration

with Sequential Gaussian Simulation
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Abstract—Filtering additive white Gaussian noise in images
using the best linear unbiased estimator (BLUE) is technically
sound in a sense that it is an optimal average filter derived from
the statistical estimation theory. The BLUE filter mask has the
theoretical advantage in that its shape and its size are formulated
in terms of the image signals and associated noise components.
However, like many other noise filtering problems, prior knowl-
edge about the additive noise needs to be available, which is often
obtained using training data. This paper presents the sequential
Gaussian simulation in geostatistics for measuring signal and
noise variances in images without the need of training data for
the BLUE filter implementation. The simulated signal variance
and the BLUE average can be further used as parameters of the
adaptive Wiener filter for image restoration.
Index Terms—Adaptive Wiener filter, best linear unbiased esti-

mator, image restoration, kriging, optimal average filter, sequential
Gaussian simulation.

I. BACKGROUND

I MAGE restoration is the process of recovering the original
image from its degraded version, which is subject to the

corruption of noise. The reduction of various types of noise in
images has been an active area of research in image processing
and computer vision. In particular, additive Gaussian noise is
the most common noise source, as its behavior and effect are
resembled by many random processes that occur in nature. In
addition, Gaussian noise models have been frequently used and
addressed in various applications, because of its mathematical
tractability in both spatial and frequency domains [1].
While there are many methods developed for the removal of

additive random noise in images, which are selectively found
in [2]–[9], this paper focuses on the estimation of the parame-
ters for the optimal best linear unbiased estimator (BLUE) av-
erage and adaptive Wiener filters. In fact, the Wiener filter and
its modified versions have been found useful to the processing of
advanced biological and medical image signals [10], [11]. Thus,
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a brief background about the degradation model as well as the
popular adaptive Wiener filter are presented first as follows.
A digital image degraded with additive random noise can be

modeled as [12]

(1)

where is the degraded digital image, is the original dig-
ital image, and represents the signal-independent additive
random noise.
Furthermore, if is zero mean and white with variance ,

and is assumed to be stationary and within a small local re-
gion, then can be modeled as [13], [14]

(2)

where and are the local mean and standard deviation of
, respectively; and is the zero-mean white noise variable

with unit variance. The above equation models as a sum of a
space-variant local mean and white noise with space-variant
local variance .
The Wiener filter provides the restored image within the

local region by [12]

(3)

The adaptive Wiener filter attempts to suppress noise in a
digital image using and that are updated at each pixel
as follows [12]:

(4)

in which if the noise variance is not known, the adaptiveWiener
filter calculates as the average of all the estimated local
variances.
The next section presents the derivation of an optimal average

image filter using the BLUE.

II. BLUE-BASED IMAGE FILTER
Based on the noise model outlined earlier, Equation (2) can

be rewritten as

(5)

where , and are the number of local pixels.
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An optimal estimate of , denoted as , can be formulated
as a weighted linear combination of the local pixels:

(6)

Assuming that the expected values of the are ,
and the are uncorrelated, giving , for , and
the variances of the are . The estimate
is unbiased if , resulting in

, which restricts [15], [16]. Furthermore,
the best linear unbiased estimator (BLUE) means that

is to be minimized, or the must minimize

(7)

subject to

(8)

By rewriting Equation (8) as

(9)

This minimization problem can be solved without calculus by
using the Cauchy’s Inequality [15] that gives

(10)

with equality if and only if

(11)

where is a constant. Thus,

(12)

Summing on both sides of Equation (12) and using Equa-
tion (8) gives

(13)

The BLUE for can now be obtained as

(14)

If all the are the same, the BLUE for becomes the
arithmetic mean of all . Equation (14) yields the same filter
mask using the Bayesian BLUE as described in [17].
The next section presents the notion of sequential Gaussian

simulation in geostatistics, which can be applied to estimate
required for the calculation of expressed in Equation (14).
In turn, the noise variance specified in Equation (4) can be

computed as the average of all the simulated local variances .
Thus, two pixel-wise updated parameters and , and
the constant noise variance can be estimated for the perfor-
mance of the adaptive Wiener filter.

III. ESTIMATING FILTER PARAMETERS WITH SEQUENTIAL
GAUSSIAN SIMULATION

Sequential Gaussian simulation (SGS) is a stochastic method
for generating partial realizations using multivariate normal
random functions, and kriging estimator in geostatistics [18].
The basic notion of SGS is established on the following the-
orem that proves the equivalence between drawing from a
multivariate distribution and from a sequence of univariate
distributions conditional to univariate realizations. Let
be a subset of variables of a random function, and be
a sampling of size . The conditional cummulative frequency
distribution function is
given by

(15)
whose proof can be constructed using Bayes’ theorem, and pro-
vided in [18].
Another important theorem for SGS states that if a kriging

error for the kriged estimate of the sample at loca-
tion is normally distributed with zero mean and variance:

, then the probability distribution for the true
value is (also see [18] for its proof).
The procedure of SGS starts with the concept of kriging [18],

[16], [19]. The kriging estimate of , denoted as , is com-
puted as

(16)

where is the known intensity value of the pixel at location ,
is the number of neighbors of the pixel whose value is to be

estimated, and are the kriging weights to be determined by
solving the following ordinary kriging system [16]:

(17)

where , and

(18)

The variance of the kriging estimation error is given by [16]

(19)

The semi-variogram, , of an image is defined as the half
of the average squared difference between the paired pixel inten-
sities of which distance is separated by a lag or Euclidean
distance [16]:

(20)
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Fig. 1. Theoretical semi-variogram using the spherical model with and
.

where is the number of pairs of and that are sepa-
rated by lag .
The function defined in Equation (20) is called the exper-

imental semi-variogram. The experimental semi-variogram is
considered isotropic when it depends only on the lag , and
anisotropic when it varies in different directions. Thus, the ex-
perimental semi-variogrammust be prepared for different direc-
tions given the configuration of the data. In this study, is taken
in both horizontal and vertical directions of the image.
The theoretical semi-variogram is a function represented by

a model equation. A widely used theoretical semi-variogram is
the spherical or the Matheron model, which is used in this study
and defined as [16]

(21)

where and are called the range and the sill of the theoretical
semi-variogram, respectively; which can be estimated using the
experimental semi-variogram.
Fig. 1 shows the spherical semi-variogram model defined in

(21). When , two samples are taken at the same position,
and the difference between the two must be zero. When ,
the two samples move a distance apart and some positive dif-
ference between the two values can be expected. As the sam-
ples move further apart, the differences should increase accord-
ingly. Ideally when the distance becomes very large and reaches
, the sample values become independent of one another. The
semi-variance will then become constant at as the result
of the calculation of the difference between the pairs of inde-
pendent samples.
Based on the two theorems and the method of kriging pre-

sented above, the algorithm for SGS is described as follows
[18], [19].
Algorithm for SGS with Image Data
1) Transform image data to standard normal distribution if the

sampling is not univariate normal.
2) Use the experimental semi-variogram to construct a suit-

able theoretical semi-variogram for the transformed data.
3) Select randomly a pixel at location , which is without a

value and due for the generation of a simulated value, and

perform kriging to obtain the estimate of (Equation (16))
by means of the image intensities of its neighboring
pixels, and then the corresponding kriging variance (Equa-
tion (19)) by means of the theoretical semi-variogram.

4) Draw a random residual that follows a normal distribu-
tion

5) The simulated value is the sum of the kriged estimate and
residual: .

6) Add to the set of the image data.
7) If is not the last pixel without a value, go to Step 2.
8) If Step 1 was performed, back transform the values in the

multivariate realization to the original space.
By performing a number of simulations on an image,

expressed in Equation (14) can be statistically obtained, which
leads to the estimation of adaptive Wiener filter parameters

, , and , required for computing Equation (4).

IV. EXPERIMENT

The proposed approach for estimating the parameters of the
optimal average and adaptive Wiener filter was tested using the
Lena image of pixels, a PET-CT image of a lung
tumor of pixels, and an image of rice grains of
pixels. The three original images were degraded with different
levels of white Gaussian noise distribution of zero mean ( )
and variance . Each of the degraded images was used to per-
form 10 sequential Gaussian simulations of 70% of the image
data, using the public-domain BMELIB software [20], which
also automatically estimated the sill and range for the theoret-
ical variogram using the information provided by the experi-
mental one. The image signal and noise variances were com-
puted using the simulated images. The image signal variances
were used for the processing of the optimal average filter. The
image signal and noise variances obtained from the simulated
images together with the local intensity mean values obtained
from the optimal average filter were then used for the processing
of the adaptive Wiener filter.
The peak signal-to-noise ratio (PSNR) expressed in dB

was used to compare the performance of the average filter
(AF), adaptive Wiener filter (AWF), simulation-based optimal
average filter (SOAF), and simulation-based adaptive Wiener
filter (SAWF). A higher PSNR generally indicates that the
image restoration is of higher quality. The PSNR is defined as
[21]:

(22)

where is taken as the maximum value of the image data
type, which is 255 for the intensity range [0, 255] used in this
paper, and MSE is the mean square error between the original
image and processed image of size:

(23)

Using a filter mask of , the PSNR of the three images
obtained for the AF, AWF, SOAF, and SAWF are given in
Tables I–III. Figs. 2–4 show the original Lena, tumor, and
rice images, in which the original images were degraded with
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Fig. 2. Lena image: original (top-left), degraded with (top-right),
average filter (middle-left), adaptive Wiener filter (middle-right), simula-
tion-based optimal average filter (bottom-left), and simulation-based adaptive
Wiener filter (bottom-right).

Fig. 4. Image of rice grains: original (top-left), degraded with (top-
middle), average filter (top-right), adaptive Wiener filter (bottom-left), simula-
tion-based optimal average filter (bottom-middle), and simulation-based adap-
tive Wiener filter (bottom-right).

white Gaussian noise of and , and images
restored by the AF, AWF, SOAF, and SAWF, respectively. In
particular, although with some visible noise highlights, the
bottom-right image of Fig. 3, which was processed by SAWF,
was restored with the desirable high-detail image region of the
tumor, showing glucose (sugar) solution that contains a very
small amount of radioactive material absorbed by the tissues.
The SAWF achieves the highest PSNR in all noise levels of

all three images, in which the PSNR improvements for the tumor
image are the highest. The PSNR values of the SOAF are higher
than those of the AF in all noise levels of all three images, and
the AWF in the cases of the images being degraded with higher
noise levels ( and ). The experimental re-

Fig. 3. PET-CT image of a lung tumor: original (top-left), degraded with
(top-middle), average filter (top-right), adaptive Wiener filter

(bottom-left), simulation-based optimal average filter (bottom-middle), and
simulation-based adaptive Wiener filter (bottom-right).

TABLE I
PSNR (DB) OF RESTORATION RESULTS OF THE LENA IMAGE DEGRADED WITH

DIFFERENT NOISE LEVELS OF

TABLE II
PSNR (DB) OF RESTORATION RESULTS OF THE PET-CT IMAGE OF A LUNG

TUMOR DEGRADED WITH DIFFERENT NOISE LEVELS OF

TABLE III
PSNR (DB) OF RESTORATION RESULTS OF THE IMAGE OF RICE GRAINS

DEGRADED WITH DIFFERENT NOISE LEVELS OF

sults consistently show the noice-reduction improvements of the
simulation-based optimal average filter over the average filter,
and the simulation-based adaptive Wiener filter over the adap-
tive Wiener filter.

V. CONCLUSION

The sequential Gaussian simulation has been utilized for es-
timating the parameters of the optimal average and adaptive
Wiener filters without the requirement of training data. The pro-
posed approach can be extended using multivariate kriging [22]
to perform the restoration of noisy color images.
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