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The NLMS Algorithm with Time-Variant
Optimum Stepsize Derived from a
Bayesian Network Perspective

Christian Huemmer, Roland Maas, and Walter Kellermann, Fellow, IEEE

Abstract—In this letter, we derive a new stepsize adaptation
for the normalized least mean square algorithm (NLMS) by
describing the task of linear acoustic echo cancellation from a
Bayesian network perspective. Similar to the well-known Kalman
filter equations, we model the acoustic wave propagation from the
loudspeaker to the microphone by a latent state vector and define
a linear observation equation (to model the relation between
the state vector and the observation) as well as a linear process
equation (to model the temporal progress of the state vector).
Based on additional assumptions on the statistics of the random
variables in observation and process equation, we apply the ex-
pectation-maximization (EM) algorithm to derive an NLMS-like
filter adaptation. By exploiting the conditional independence rules
for Bayesian networks, we reveal that the resulting EM-NLMS
algorithm has a stepsize update equivalent to the optimal-stepsize
calculation proposed by Yamamoto and Kitayama in 1982, which
has been adopted in many textbooks. As main difference, the
instantaneous stepsize value is estimated in the M step of the EM
algorithm (instead of being approximated by artificially extending
the acoustic echo path). The EM-NLMS algorithm is experimen-
tally verified for synthesized scenarios with both, white noise and
male speech as input signal.

Index Terms—Adaptive stepsize, EM algorithm, NLMS.

I. INTRODUCTION

M ACHINE learning techniques have been widely ap-
plied to signal processing tasks since decades [1],

[2]. For example, directed graphical models, termed Bayesian
networks, have shown to provide a powerful framework for
modeling causal probabilistic relationships between random
variables [3]–[7]. In previous work, the update equations of the
Kalman filter and the normalized least mean square (NLMS)
algorithm have already been derived from a Bayesian network
perspective based on a linear relation between the latent room
impulse response (RIR) vector and the observation [8], [9].
The NLMS algorithm is one of the most-widely used adap-

tive algorithms in speech signal processing and a variety of
stepsize adaptation schemes has been proposed to improve its
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Fig. 1. System model for linear AEC with RIR vector .

system identification performance [10]–[21]. In this article, we
derive a novel NLMS-like filter adaptation (termed EM-NLMS
algorithm) by applying the expectation maximization (EM)
algorithm to a probabilistic model for linear system iden-
tification. Based on the conditional independence rules for
Bayesian networks, it is shown that the normalized stepsize
of the EM-NLMS algorithm is equivalent to the one proposed
in [10], which is now commonly accepted as optimum NLMS
stepsize rule, see e.g. [22]. As the main difference relative to
[10], the normalized stepsize is here estimated as part of the
EM algorithm instead of being approximated by artificially
extending the acoustic echo path. For a valid comparison,
we review the algorithm of [10] for the linear acoustic echo
cancellation (AEC) scenario shown in Fig. 1. The acoustic path
between loudspeaker and microphone at time is modeled by
the linear finite impulse response (FIR) filter

(1)

with time-variant coefficients , where .
The observation equation models the microphone sample :

(2)

with the additive variable modeling near-end inter-
ferences and the observed input signal vector

capturing the time-domain samples
. The iterative estimation of the RIR vector by the adaptive

FIR filter is realized by the update rule

(3)

with the stepsize and the error signal

(4)

relating the observation and its estimate . In
[10], the optimal choice of has been approximated as:

(5)

where denotes the Euclidean norm and the expecta-
tion operator. As the true echo path is unobservable, so that
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TABLE I
RELATION BETWEEN THE NLMS ALGORITHM FOLLOWING [10]

AND THE PROPOSED EM-NLMS ALGORITHM

the numerator in (5) cannot be computed, is further approxi-
mated by introducing a delay of coefficients to the echo path

. Moreover, a recursive approximation of the denominator in
(5) is applied using the smoothing factor [22], [23]. The re-
sulting stepsize approximation

(6)

leads to oscillations which have to be addressed by limiting
the absolute value of [24]. In this article, we derive the
EM-NLMS algorithm which applies the filter update of (3)
using the stepsize in (5), where is estimated in the M Step of
the EM algorithm instead of being approximated by using (6).
This article is structured as follows: In Section II, we pro-

pose a probabilistic model for the linear AEC scenario of
Fig. 1 and derive the EM-NLMS algorithm, which is revealed
in Section III to be similar to the NLMS algorithm proposed
in [10]. As main difference (cf. Table I), the stepsize is es-
timated in the M Step of the EM algorithm instead of being
approximated by artificially extending the acoustic echo path.
In Section IV, the EM-NLMS algorithm is experimentally
verified for synthesized scenarios with both, white noise and
male speech as input signal. Finally, conclusions are drawn in
Section V.

II. THE EM-NLMS ALGORITHM FOR LINEAR AEC
Throughout this article, the Gaussian probability density

function (PDF) of a real-valued length- vector with mean
vector and covariance matrix is denoted as

(7)

Furthermore, (with identity matrix ) implies the
elements of to be mutually statistically independent and of
equal variance .

A. Probabilistic AEC Model
To describe the linear AEC scenario of Fig. 1 from a Bayesian

network perspective, we model the acoustic echo path as a la-
tent state vector identically defined as in (1) and capture un-
certainties (e.g. due to the limitation to a linear system with a
finite set of coefficients) by the additive uncertainty . Con-
sequently, the linear process equation and the linear observation
equation,

(8)

can be jointly represented by the graphical model shown in
Fig. 2. The directed links express statistical dependencies be-
tween the nodes and random variables are marked as circles.

Fig. 2. Bayesian network for linear AEC with latent state vector .

We make the following assumptions on the PDFs of the random
variables in Fig. 2:
• The uncertainty is normally distributed with mean
vector (of zero-valued entries) and variance :

(9)

• The microphone signal uncertainty is assumed to be
normally distributed with variance and zero mean:

(10)

• The initial state vector is normally distributed. Due to
the linear relations of the random variables in (8), also

, and are Gaussian prob-
ability distributions, where the latter is denoted as:

(11)

with . Finally, we restrict the covariance
matrix of the posterior distribution to be [16]

(12)

where represents the trace of a matrix.

Based on this probabilistic AEC model, we apply the EM
algorithm where the filter update of (3) is derived in the E Step
(Section II-B). As main innovation, the optimal stepsize in
(5) is estimated using the model parameters and
predicted in the M step (Section II-C).

B. E step: Inference of the State Vector
The minimum mean square error (MMSE) estimation of the

state vector identifies the mean vector of the posterior distribu-
tion as estimate :

(13)

Due to the linear relations between the variables in (2) and (8),
and under the restrictions to a linear estimator of and nor-
mally distributed random variables, the MMSE estimation is
analytically tractable [9]. Exploiting the product rules for linear
Gaussian models and conditional independence of the Bayesian
network in Fig. 2, the filter update can be derived as a special
case of the Kalman filter equations [9, p. 639]:

(14)

where the stepsize matrix is calculated as follows:

(15)

(16)
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By inserting (9) and (12), we can rewrite the filter update of (14)
to the filter update defined in (3) with scalar stepsize :

(17)

(18)

Before showing the equality of the stepsize updates in (17) and
(5) in Section III, we propose a new alternative to estimate
in (17) by deriving the updates of the model parameters
and in the following section.

C. M step: Online Learning of the Model Parameters
In the M step, we predict the model parameters for the fol-

lowing time instant. Although the maximum likelihood estima-
tion is analytically tractable, we apply the EM algorithm to de-
rive an online estimator: In order to update
to the new parameters , the lower bound [9]

(19)

is maximized, where . For this, the PDF
is determined by applying the decomposition

rules for Bayesian networks [9]:

(20)

Next, we take the natural logarithm ln of ,
replace by and maximize the left-hand side
of (19) with respect to the new parameters:

(21)

(22)

starting with the estimation of by inserting

(23)

into (22). This leads to the instantaneous estimate:

(24)
(25)
(26)

The variance (of the microphone signal uncertainty) in
(26) consists of two components, which can be interpreted as
follows [25]: The first term in (26) is given as the squared error
signal after filter adaptation and is influenced by near-end in-
terferences like background noise. The second term in (26) de-
pends on the signal energy and the variance which
implies that it considers uncertainties in the linear echo path
model. Similar to the derivation for , we insert

(27)

into (21), to derive the instantaneous estimate of :

(28)

(29)

where we employed the statistical independence between
and . Equation (29) implies the estimation of as dif-
ference of the filter tap autocorrelations between the time in-
stants and . Finally, the updated parameter values are
used as initialization for the following time step, so that

(30)

III. COMPARISON BETWEEN THE EM-NLMS ALGORITHM AND
THE NLMS ALGORITHM PROPOSED IN [10]

In this part, we compare the proposed EM-NLMS algorithm
to the NLMS algorithm reviewed in Section I and show the
equality between the stepsizes in (5) and (17). We reformulate
the update in (17) by applying the conditional independence
rules for Bayesian networks [9]: First, we exploit the equalities

(31)

which lead to the following relations:

(32)

Second, it can be seen in Fig. 2 that the state vector and
the uncertainty are statistically independent as they share a
head-to-head relationship with respect to the latent vector .
As a consequence, the numerator in (17) can be rewritten as

(33)

Finally, we consider the mean of the squared error signal

(34)

which is not conditioned on the microphone signal . By ap-
plying the conditional independence rules to the Bayesian net-
work in Fig. 2, the head-to-head relationship with respect to
implies to be statistically independent from and ,
respectively. Consequently, we can rewrite (34) as:

(35)

The insertion of (33) and (35) into the stepsize defined in (17)
yields the identical expression for as in (5). Thus, the main
contribution of the proposed EM-NLMS algorithm is that the
model parameters and (and consequently the nor-
malized stepsize ) are estimated in the M step of the EM al-
gorithm instead of being approximated using (6).
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TABLE II
REALIZATIONS OF THE EM-NLMS ALGORITHM (“EM-NLMS”), THE NLMS
ALGORITHM DUE TO [10] (“ADAPT. NLMS”) AND THE CONVENTIONAL

NLMS ALGORITHM (“CONV. NLMS”)

IV. EXPERIMENTAL RESULTS
This section focuses on the experimental verification

of the EM-NLMS algorithm (“EM-NLMS”) in compar-
ison to the adaptive stepsize-NLMS algorithm described in
Section I (“Adapt. NLMS”) and the conventional NLMS algo-
rithm (“Conv. NLMS”)with a fixed stepsize. An overview of the
algorithms including the individually tuned model parameters
is shown in Table II. Note the regularization of all three stepsize
updates by the additive constant to avoid a division by
zero. For the evaluation, we synthesize the microphone signal
by convolution of the loudspeaker signal with an RIR vector
measured in a room with ms. This is realized at
a sampling rate of kHz ( ) for both white noise
and a male speech signal as loudspeaker signals. Furthermore,
background noise is simulated by adding Gaussian white noise
at a global signal-to-noise ratio of dB. The comparison is
realized in terms of the stepsize and the system distance
as a measure for the system identification performance:

(36)

The results for white noise as input signal are shown in
Fig. 3. Note that in Fig. 3(a) the EM-NLMS shows the best
system identification compared to the Adapt. NLMS and the
Conv. NLMS. As depicted in Fig. 3(b), the stepsize of the
EM-NLMS is not affected by oscillations as the Adapt. NLMS.
For male speech as input signal, we improve the convergence

of theConv.NLMSby setting afixed threshold to stop adaptation
( ) in speechpauses.Furthermore, the absolutevalueof
for theAdapt. NLMS is limited to 0.5 (for a heuristic justification
see [24]). As illustrated in Fig. 4(a), the EM-NLMS shows again
the best system identification compared to theAdapt. NLMS and
the Conv. NLMS. By focusing on a small time frame, we can see
in Fig. 4(b) that the stepsize of the EM-NLMS algorithm is
not restricted to the values of 0 and 0.5 (as Conv. NLMS) and not
affected by oscillations (as Adapt. NLMS).
Due to the instantaneous parameter updates in Table I (we

apply one EM iteration at each time step), the number of real-
valued multiplications per iteration step is only increased from

(Conv. NLMS) to (EM-NLMS). Note that

Fig. 3. Comparison of the EM-NLMS algorithm (“EM-NLMS”), the NLMS
algorithm due to [10] (“Adapt. NLMS”) and the conventional NLMS algorithm
(“Conv. NLMS”) in terms of the system distance and the stepsize for
white Gaussian noise as input signal.

Fig. 4. Comparison of the EM-NLMS algorithm (“EM-NLMS”), the NLMS
algorithm due to [10] (“Adapt. NLMS”) and the conventional NLMS algorithm
(“Conv. NLMS”) in terms of the system distance and the stepsize
(short time frame for visualization purposes) for male speech as input signal
(see the microphone signal in Fig. 4(c))..

the derived stepsize rule is also promising for applications like
drift tracking, that the estimation of and converges
to a locally optimum solution and that multiple EM iterations
(at each time step) might also be of interest.

V. CONCLUSION
A probabilistic model for linear system identification has

been defined to address the task of linear AEC from a Bayesian
network perspective. We apply the EM algorithm and derive an
NLMS-like filter adaptation. As main innovation, the stepsize
is shown to be equivalent to the commonly accepted optimum
stepsize in [10] and estimated in the M step of the EM algo-
rithm (instead of being approximated by artificially extending
the acoustic echo path). The resulting approach is denoted
as EM-NLMS algorithm and experimentally verified for the
task of linear AEC with simulated scenarios. By deriving an
improved estimate for the optimum NLMS stepsize, this article
exemplifies the benefit of applying machine learning techniques
to classical signal processing tasks.
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