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Efficient Scale- and Rotation-Invariant Encoding of
Visual Words for Image Classification

Hafeez Anwar, Sebastian Zambanini, and Martin Kampel

Abstract—The problem of incorporating spatial information to
the bag-of-visual-words model for image classification is addressed
in this letter. To incorporate such information, we propose to en-
code the global geometric relationships of the visual words in the

image plane in a scale- and rotation-invariant manner. This
is established by measuring scale- and rotation-invariant geomet-
rical properties given by triangles of identical visual words. Ex-
perimental results demonstrate that our proposed method is more
robust to changes in scale and image rotations than the bag-of-vi-
sual words model on a butterfly and fish dataset.
Index Terms—Image classification, object recognition, support

vector machines.

I. INTRODUCTION

T HE bag of visual words model (BoVWs) has been used in
a variety of problems such as scene classification [1], [2],

large-scale image retrieval [3], [4] and object category recogni-
tion [5], [6]. In this technique, as a first step, local features such
as SIFT [7] are collected from a set of images and quantized to
form a vocabulary of the visual words. These visual words are
then assigned to local features that are extracted from a given
image based on a similarity measure. The image is then repre-
sented as a histogram of visual words. This histogram lacks the
spatial information of the visual words which, if incorporated,
results in better performance [1]. However, such spatial infor-
mation must be robust to geometric transformations occurring
in the image data, e.g. rotations [8].
The methods for the incorporation of spatial information

to the BoVWs can broadly be divided into two groups. The
methods in the first group split the image space into subspaces
or tilings of various shapes and then from each tiling the statis-
tics of visual words are collected. The most notable work in this
group is the spatial pyramid matching (SPM) [1]. SPM divides
the image space into hierarchically decreasing rectangular
tilings. Weighted statistics of visual words from tilings at each
level are then aggregated to achieve improved performance.
Inspired by shape matching [9], log-polar tiling is used by
Zhang et al. [10]. Single, multiple and multi-scale log-polar
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tilings are imposed on image space. From each sector of the
log-polar tiling, statistics of visual words are extracted. They
report improved performance over SPM on three benchmark
datasets. Another recent method in this group also splits the
image space into rectangular tilings which is calledword spatial
arrangement[11]. Defining the position of a given visual word
as the origin, the image space is divided into four tilings. From
each tiling, the information about the visual words is collected.
This process is repeated for all the visual words of a given
image. Finally, the information of all the four tilings is aggre-
gated to represent the image. The methods in the second group
encode the relationships among visual words. A notable work
in this group is that of Khan et al. [12]. They propose to use the
angles made by the positions of pairs of identical visual words
with respect to the -axis. A normalized histogram of angles
is constructed to represent the image which they call pair-wise
identical words angles histogram (PIWAH). However, all these
methods are not robust to image rotations. To cope with image
rotations in case of ancient coins, we proposed circular tiling
[8], [13] which is only suitable for ancient coins as they can be
automatically segmented [14] from the background. Circular
tiling is not suitable in cases where automatic segmentation
cannot be used.
The angles and ratios of the sides of a triangle are invariant to

rotations, scale changes and translation. The triangular relation-
ship of identical color patches is used by Tao and Grosky [15]
to construct the so called anglograms for spatial color indexing
and image retrieval. These anglograms are rotation, translation
and scale invariant. To achieve triangular relationship among
identical color patches, they use the Delaunay triangulation
which is a well known and efficient triangulation [16] method
of the computational geometry. To add spatial information
to BoVWs, we build on both the works of Khan et al. [12]
and Tao and Grosky [15]. We propose to encode geometric
relationship of the identical visual words in an efficient scale-
and rotation-invariant manner. We extend the idea of Khan et
al. [12] to acquire the rotation-invariant geometric relationship
among identical visual words. However, unlike them, we com-
pute angles made by triplets of identical visual words instead
of pairs of two identical words. From these angles, histograms
are constructed in a similar manner as proposed by Khan et
al. [12]. However, calculating angles for a huge number of
unique triplets of identical visual words is a computationally
expensive process. To reduce the calculation complexity, we
use the Delaunay triangulation like Tao and Grosky [15]. To
achieve rotation-invariance locally, we use dense SIFT features
for which the dominant orientations are calculated. Besides
rotation-invariant, Delaunay triangulation is also scale invariant
as shown by Tao and Grosky [15]. In order to increase the
discriminative power of the model on a local level, we extract
dense SIFT features at several predefined scales. Following are
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Fig. 1. PIWs and TIWs for the descriptors , and at image positions
, and respectively. All descriptors belong to the same visual words
.

the major extensions of our recently published work [17] that
we present in this paper.
1) The run-time required by the triangulation among the

triplets of identical visual words is reduced by using the
Delaunay triangulation.

2) Discriminating power of local features is increased by ex-
tracting them at several scales.

3) An extended dataset of butterflies is used.
4) A novel image dataset of 15 species of fish is used to eval-

uate the proposed method.

II. SCALE- AND ROTATION-INVARIANT HISTOGRAM
OF IDENTICAL VISUAL WORDS

In the BoVWs model, similar image patches are assigned
to the same visual word. Khan et al. [12] propose to use
pairs of identical visual words (PIWs) for image description
where a given pair consists of two identical words as shown
in Fig. 1. The angles made by the positions of visual words
with respect to the -axis are calculated for all PIWs in a given
image. These angles are then used to construct the PIW angle
histogram (PIWAH) for image representation. Since the angles
are computed with respect to the -axis, their proposed method
is not rotation-invariant. We modify their method to achieve
rotation-invariant triangular relationship among identical visual
words. We use three identical visual words in a given pair
and denote it as Triplets of Identical Words (TIWs) as shown
in Fig. 1. For image representation, the angles computed for
each triplet are used to construct the TIW angles histogram
(TIWAH).
In the BoVWs model, a visual vocabulary

consists of visual words. A
given image is first represented as a set of descriptors;

where is the total number of
descriptors. A given descriptor is then mapped to a visual
word using a similarity measures like the Euclidean distance,

(1)

where is the th descriptor in the image and is the
visual word assigned to this descriptor based on the distance

. The given image is then represented as the his-
togram of visual words where the number of bins of this his-
togram is equal . Let be the set of all descriptors mapped
to a visual word , then the th bin of the histogram of visual
words , is the cardinality of the set .

(2)

Fig. 2. Triangulation methods.

We previously proposed [17] to use all the distinct pairs of three
descriptors from set to calculate angles between the spa-
tial positions of the descriptors as shown in Fig. 2. We call that
method combinatorial triangulation as the triangulation is done
for all the distinct triplets of descriptors belonging to a given
visual word. The spatial position of a descriptor is given by its
position on the dense sampling grid. The set of all TIWs related
to a visual word is defined as:

(3)
where , and are the spatial positions of the descriptors
, and respectively. The value of the th bin of the his-

togram shows the frequency of the visual word . Therefore,
in case of combinatorial triangulation, the cardinality of
is the number of all possible triplets of distinct elements among
the elements of . The positions of the elements of each pair
make a triangle. Calculating angles for such a huge number of
triangles is time consuming. For instance, if the cardinality
of the set is then the number of unique triplet combinations
is 82160. Therefore, we propose to use the Delaunay triangu-
lation where the number of triangles is much smaller. In De-
launay triangulation, the three points should not be collinear
and the circumscribed circle defined by the three points should
not contain any other point. The principles of the Delaunay tri-
angulation significantly reduce the number of triangles for angle
computation among TIWs. Fig. 2 shows both the Delaunay and
the combinatorial triangulations. It can be observed that for 8
descriptors belonging to a visual word, combinatorial triangu-
lation results in 56 triangles while the Delaunay triangulation
results in 9 triangles. The angles histogram is built from the an-
gles of Delaunay triangles with bins between 0 and 180 . The
angles histogram for a specific word is named as .
The th bin of the histogram of visual words associated with
visual word is replaced with in such a way that
the spatial information is added without losing the frequency
information of . Finally of all the visual words are
combined to represent a given image.

(4)

where is the normalization coefficient. For a visual vocabu-
lary of size , if the number of bins in angles histogram is ,
then the size of the TIWAH is .

III. EXPERIMENTS AND RESULTS
Experiments are performed on all the classes of the Leeds

butterfly dataset [18] and five more classes which are ‘Achilles
Morpho’, ‘Common Jay’, ‘Machaon’, ‘Peacock’ and ‘Purple
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Fig. 3. Exemplar images of butterfly classes and Fish classes.

Emperor’. Furthermore, a novel dataset of butterfly fish species
is created to evaluate the proposed method. In total, we use 15
classes in each dataset whose exemplar images are shown in
Fig. 3. We use images of butterflies and fish to evaluate our
proposed method because both of them can undergo changes
in scale and in-plane rotations. In the butterflies dataset, the
training set consists of 820 images while the test set consists
of 351 images, while in the fish dataset 564 images are used
for training and 242 for testing. For classification, we use the
one-vs-all setting of SVM with Helinger kernel [19]. We ex-
tract SIFT features from images using a regular grid of pixel
stride 10. To achieve rotation-invariance locally and enrich the
features by multiple support regions, we compute the dominant
orientation of each SIFT feature at several scales. We now give
details of our experiments for various parameters.

A. Number of Scales for Local Features Extraction
On the given datasets, we optimize for the number of scales

to extract the dense SIFT features. Starting from a single scale
of 2, we extract features at 10 scales where a given scale is
a multiple of its predecessor. Rotation-invariant SIFT
features are extracted and concatenated at predefined scales
of . We
previously showed that the use of segmentation masks at the
stage of vocabulary construction enhances the discriminating
nature of the vocabulary, thus resulting in a higher classification
rate [17]. Here we also use segmentation masks to extract the
foreground features for vocabulary construction. Results for the
experiments on the number of scales for both the datasets are
given in Fig. 4. The size of vocabulary is 200. Two main con-
clusions can be drawn from the results. First, for the butterflies
dataset the maxima occur at 8 scales while for the fish dataset
they occur at 7 scales. Second, on both the datasets
clearly outperforms and the BoVWs model.

B. Run-Times and Classification Accuracies of the
Triangulation Methods
To evaluate the efficiency of both the Delaunay and combina-

torial triangulation schemes, we perform experiments to com-

Fig. 4. Results for the number of scales on both the datasets. Due to the shortage
of space, the results are shown for 5 to 9 scales. The mean performances are
shown with their 95% confidence intervals.

pare their classification accuracies and the computation time
they take for a given set of images. The training and test sets
are used to compare the classification accuracies of both the
schemes. Experiments are performed 10 times and in each ex-
periment the size of vocabulary is 200, the rotation-invariant
local features are extracted at 8 scales for butterflies dataset and
at 6 scales for fish dataset. The results averaged over the 10 clas-
sification runs are shown in Table I where it can observed that
the Delaunay triangulation performs better than the Combina-
torial triangulation. To find the time taken by each triangulation
scheme for image representation, we select one image per class
of butterflies and fish at random. Images are of standard size
which is . In our experiments we also use a faster ‘C’
language implementation of the combinatorial triangulation.We
denote this implementation as combinatorialF triangulation.We
run the experiments 10 times on a single core and report the av-
erage time taken by the histogram representations using each
triangulation method in Table I from which it can be noted that
the Delaunay triangulation performs much efficiently than the
combinatorial triangulation. To conclude, the Delaunay triangu-
lation is more efficient than the combinatorial triangulation and
also results in better classification rates on both the datasets.
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TABLE I
CLASSIFICATION RATES AND TIME TAKEN IN SECONDS

BY EACH TRIANGULATION METHOD

Fig. 5. Performances of BoVWs, PIWAH and TIWAH on predefined vocabu-
lary sizes for both the datasets.

Fig. 6. Rotation-invariance evaluation of various methods on both the datasets.

C. Influence of Vocabulary Size
We also optimize for the sizes of vocabulary on our cur-

rent datasets. The sizes of the vocabulary are predefined as
. The results are shown for all the methods

in Fig. 5. Our proposed method outperforms the other two
methods on both the datasets on all the vocabulary sizes.

D. Rotation-Invariance
Finally, we evaluate our proposed method for rotation-in-

variance along with BoVWs and PIWAH. All the images of
the training set are roughly brought to the same orientation so
that they have least rotation differences. To emphasize on rota-
tion-invariance, the background is suppressed in all the images
of the test set using the segmentation masks. All the images of
the test set are rotated by predefined angles which are [30, 60,
90, 120, 150, 180]. Thus, our test set consists of 7 test subsets.
For the butterflies dataset, rotation-invariant local features are
extracted at 8 scales while for fish dataset they are extracted
at 6 scales thus achieving rotation and scale invariance locally.
Experiments are performed 10 times and the mean classification
accuracy of each method is reported. A separate visual vocab-
ulary is constructed at each iteration whose size is 200. Results
shown in Fig. 6 indicate that TIWAH is insensitive to image ro-
tations and outperforms the BoVWs model and the method pro-
posed by Khan et al. [12] on both the datasets.

IV. CONCLUSION
An efficient method for spatial information incorporation

to the commonly used bag of visual words model is proposed

which is also invariant to changes in scale and image rotations.
This is achieved via the scale- and rotation-invariant geometric
relationships of the visual words in the 2D image space. Com-
binatorial explosion of the problem of encoding triangular
relationships in a large set of visual words is prevented by using
Delaunay triangulation in the selection process. Experimental
results indicate that our proposed method not only outperforms
the commonly used BoVWs model on two datasets but also
efficiently achieves invariance to changes in scale and image
rotations.
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