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Robust Inference for State-Space Models
with Skewed Measurement Noise
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Abstract—Filteringandsmoothingalgorithmsfor lineardiscrete-
time state-space models with skewed and heavy-tailed measure-
ment noise are presented. The algorithms use a variational Bayes
approximation of the posterior distribution of models that have
normal prior and skew- -distributed measurement noise. The
proposed filter and smoother are compared with conventional low-
complexity alternatives in a simulated pseudorange positioning
scenario. In the simulations theproposedmethodsachievebetterac-
curacy than the alternativemethods, the computational complexity
of the filter being roughly 5 to 10 times that of the Kalman filter.

Index Terms—Kalman filter, robust filtering, RTS smoother,
skew , skewness, -distribution, variational Bayes.

I. INTRODUCTION

T HE Kalman filter (KF) [1] is the linear minimum mean-
square-error filter for linear state-space models, but it is

optimal within the set of all filters only when the noise processes
are normally distributed [2]. However, the normal distribution
has small tail probabilities, and real-world data typically contain
large errors (“outliers”) more often than the normal distribution
predicts [3]. Therefore, the KF is prone to large estimation er-
rors when outliers occur. Hence, there is a need for filtering and
smoothing algorithms that mitigate the outlier measurements’
influence.
Many applications involve noise processes that have both

heavy-tailed (high-kurtosis) and asymmetric (skewed) distri-
butions. In radio signal based distance estimation [4], [5], for
example, non-line-of-sight causes large positive errors [6],
[7]. Fig. 1 shows the error histogram of a time-of-flight based
ultra-wideband distance measurement experiment1 and max-
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Fig. 1. Skewed distributions fit better than symmetric distributions to the time-
of-flight measurement errors. BIC values for 2905 data points are 9600 for skew
, 10500 for Student’s , 17200 for normal, and 10000 for GM2.

imum likelihood fits of some probability distribution families.
By the Bayesian information criterion (BIC) [8], the skewed
distributions skew [9, Ch. 4.3] and two-component Gaussian
mixture (GM2) model the data better than the symmetric
Student’s [10, Ch. 28] and normal. Other applications for
asymmetric distributions have emerged in biostatistics [11],
psychiatry [12], environmetrics [13], and economics [14].
Despite these applications, a computationally efficient es-

timation algorithm for time-series data with heavy-tailed and
asymmetric noise has been missing. Robust algorithms that
model the heavy-tailed noise with a -distribution are proposed
in [15]–[17], but these do not use the skewness information. A
GM2 can model skewness, but the number of mixture compo-
nents in the posterior increases exponentially with the number
of measurements. Furthermore, the GM2 has heavy tails only
within a limited range near the component locations, and it
has five parameters, while four suffices for modeling location,
spread, skewness and kurtosis. Particle filters (PF) [18] can
cope with a wide range of models including skewed noise
processes, but their computational complexity increases rapidly
as the state dimension increases.
This letter proposes approximations to the Bayesian filter

and smoother that retain the computational efficiency of the
KF while introducing more modeling flexibility for skewed
and heavy-tailed measurement noise. The measurement noise
is modelled by the skew -distribution, and the proposed al-
gorithms use a variational Bayes (VB) approximation of the
posterior. The proposed filter and smoother are evaluated by
numerical pseudorange positioning simulations, where they
are compared with the state-of-the-art computationally light
algorithms and a PF. To our knowledge, the only earlier work
applying VB approximations to the skew -distribution is that
of Wand et al. [19]. However, Wand et al. do not consider
state-space models and time-series estimation.

II. SKEW t-DISTRIBUTION

Skewed extensions of the well-known unimodal symmetric
distributions have been studied since the introduction of the
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Fig. 2. The PDF for different shape parameter values .

skew normal distribution by Azzalini in [20]. The univariate
skew -distribution is parametrized by its location parameter

, spread parameter , shape parameter and
degrees of freedom , and has a probability density func-
tion (PDF) of the form

(1)
where

(2)

is the PDF of Student’s -distribution, is the gamma func-
tion, and . Also,
denotes the cumulative distribution function (CDF) of Stu-
dent’s -distribution with degrees of freedom . The PDF

is plotted for six different values of shape pa-
rameter in Fig. 2. The skew -distribution approaches normal
distribution when and . Expressions for the first
two moments of the univariate skew -distribution with the
parametrisation (1) can be found in [21].
Following the introduction of the multivariate skew normal

distribution in [22], multivariate skew -distributions have been
proposed in [23]–[25]. In these versions, the PDF of the skew
-distribution involves only the univariate CDF of -distribution,
while the definition of skew -distribution given in [26]–[28] in-
volves the multivariate CDF, but a single kurtosis factor. In this
letter the measurement noise distribution is a product of inde-
pendent univariate skew -distributions. This less general model
is justified in applications where one-dimensional data from dif-
ferent sensors can be assumed to be statistically independent.

III. PROBLEM FORMULATION

Consider the linear state-space model with skew- -distributed
measurement noise

(3a)

(3b)
where denotes a (multivariate) normal PDF with
mean and covariance ; is the state transition
matrix; indexed by is the state to be
estimated with prior distribution

(4)
where the subscript “ ” is read “at time using measurements
up to time ”; also indexed by are the
measurements and the elements of are conditionally inde-
pendently skew- -distributed; is a diagonal matrix
whose diagonal elements are the squares of the spread

parameters of (3b); is a diagonal matrix whose di-
agonal elements are the shape parameters of (3b);
is a vector whose elements are the degrees of freedom of
(3b); is the measurement matrix;

and are mutually independent
noise sequences; and the operator gives the entry of its
argument.
The aim of this letter is to derive a Bayesian filter and

a Bayesian smoother using the VB method that computes
an approximation of the filtering distribution and
smoothing distribution .

IV. VARIATIONAL SOLUTION
The likelihood function implied from (3b) has the hierarchical

representation [27],

(5a)
(5b)
(5c)

is a diagonal matrix with independent random diagonal ele-
ments , and denotes the (multivariate) truncated
normal distribution with closed positive orthant as support, lo-
cation parameter , and squared-scale matrix . Furthermore,

denotes the gamma distribution with shape parameter
and rate parameter .
Using Bayes’ theorem, the likelihood (5) and the prior (4), the

joint smoothing posterior PDF can be written as

(6)

(7)

This posterior is not analytically tractable. We seek an approxi-
mation in the form

(8)

In the VB approach, the Kullback-Leibler divergence (KLD)
[29] of the true posterior from the factorized approximation is
minimized;

where is the KLD. The an-
alytical solutions for , and can be obtained by cyclic
iteration of

(9a)

(9b)

(9c)
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TABLE I
SMOOTHING FOR SKEW- MEASUREMENT NOISE

where the expected values on the right hand sides of (9) are taken
with respect to the current , and [30, Ch. 10] [31], [32].
Also, , and are constants with respect to the variables ,

and , respectively. This recursion is convergent to a local
optimum [30, Ch. 10]. When the iterations converge, approxi-
mate densities and are integrated out from the right hand
side of (8) by simply discarding them. Then, the approximate
marginal smoothing density is obtained, and it turns out
to be a normal distribution where
the parameters and are the output of the smoothing
algorithm given in Table I. The filtering algorithm and the pa-
rameters of the filtering posterior can
be found in Table II. The derivations for the expectations given
in (9) are relegated to [33] because of space constraints.

V. SIMULATIONS

Numerical simulations are carried out to evaluate the
performance of the proposed algorithms skew- variational
Bayes filter (STVBF) and skew- variational Bayes smoother
(STVBS). The compared filters are variational Bayes filter
(TVBF) [16], the bootstrap particle filter (PF), the Kalman filter
(KF), and the KF with measurement validation gating (KF-G)
[35, Ch. 5.7.2] that discards the individual measurement com-
ponents whose normalized squared innovation is larger than
the -distribution’s 99% quantile. The smoothers are varia-
tional Bayes smoother (TVBS) [16], and Rauch-Tung-Striebel
smoother with gating (RTSS-G) [36]. KF, KF-G, and RTSS-G
use the true mean and covariance of the measurement noise
distribution, and the TVBF and TVBS use the true mean and

times the true covariance as the shape matrix. The
computations are done using MATLAB.

TABLE II
FILTERING FOR SKEW- MEASUREMENT NOISE

Fig. 3. One-dimensional positioning example illustrates TVBF estimate’s neg-
ative bias and KF’s sensitivity to outliers. Measurement error of 300 at time in-
stant 49 is not shown.

TABLE III
ERROR STATISTICS IN ONE-DIMENSIONAL POSITIONING

A. One-Dimensional Positioning

The simulation consists of 1000 100-step random-walks of
model (3) with parameters , , , ,

, and , where is a vector of ones.
The VB iterations of STVBF and TVBF are terminated when
the change in the estimate is less than 0.01.
Some statistics of the estimation error are in Table III, and

Fig. 3 shows an example of the error processes. Table III shows
that the STVBF has the lowest root-mean-square error (RMSE),
the TVBF and KF-G have negative bias, and the KF’s error
process has the highest standard deviation and positive skew. As
illustrated by Fig. 3, the TVBF and KF-G react relatively slowly
to positive errors, interpreting them as outliers to be discounted.
The KF error’s skewness is caused by excessive sensitivity to
the large positive measurement errors.
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Fig. 4. Convergence of the STVBF with . Ten STVBF iterations is
enough to outperform TVBF. One additional VB iteration gives the same accu-
racy gain as 100 additional PF particles. (a) . (b) .

B. Pseudorange Positioning

GNSS-type (global navigation satellite system) pseudorange
measurements are simulated from the model

(10)

where is the th satellite’s position, is bias, is noise,
and is varied. The model is linearized, and the linearization
error is negligible because the satellites are far from the re-
ceiver. The state model is a three-dimensional randomwalk with
process noise covariance matrix , where
is a parameter. The constant bias has prior .

Satellite constellations of Global Positioning System provided
by the International GNSS service [37] are used, and on average
7.6 satellites are measured. The results are based on 1000Monte
Carlo replications of a 100-step trajectory. The RMSE is com-
puted for the components .
Evaluation of the Filter: Fig. 4 studies the convergence of the

STVBF’s VB iteration with . The speed of convergence
depends on the parameters of the model; the larger , the slower
convergence, and large and a high number of sensors can also
increase the required number of iterations. The RMSE reduc-
tion is fastest for the first iterations, 10 iterations is enough to
outperform TVBF, and after 30 iterations the RMSE reduction
is negligible. Thus, the STVBF is slower than the TVBF that
requires 5 iterations. In this example, one additional VB itera-
tion gives the same accuracy gain as 100 additional PF particles.
In the remaining numerical examples, STVBF’s VB iteration is
terminated after 30 iterations, and TVBF’s after 10 iterations.
Fig. 5 shows the distributions of the RMSE differences of the

comparison methods from the STVBF’s RMSE as percentages
of the STVBF’s RMSE. The levels of the boxes are 5%, 25%,
50%, 75%, and 95% quantiles. With , the STVBF out-
performs the comparison methods in significant majority of the
replications. The problems with are explained by the
model structure: only sums of and are measured, so
and are correlated a posteriori, which makes the VB approx-
imation underestimate the posterior variance [30, Ch. 10.1.2].
The STVBFworks well only when the process noise has enough
dispersion to dominate in the prior’s variance, i.e. when the
signal-to-noise ratio (SNR) is not very low.
Real-World Noise: The robustness of the STVBF is evaluated

by generating the noise in (10) from the histogram distribution
of the time-of-flight data set of Fig. 1 and using . The
histogram of the RMSE differences of TVBF from the RMSE of
STVBF is in Fig. 6. The proposed method has lower RMSE than
the TVBF in 61% of the 1000 Monte Carlo replications. This
indicates that the proposed filter is robust to small deviations
from the model that appear in real data.

Fig. 5. RMSE differences per cent of the STVBF’s RMSE. The proposed
STVBF outperforms the comparison methods with skewed measurements
when the signal-to-noise ratio is high enough. (a) . (b) . (c)

. (d) .

Fig. 6. RMSE difference of TVBF per cent of the STVBF’s RMSE with noise
generated from real time-of-flight measurements’ error histogram. STVBF has
lower RMSE than the TVBF in 61% of the 1000 replications.

Fig. 7. Smoothers’ RMSE differences per cent of the STVBS’s RMSE. STVBS
performs well also at low SNR, but difference to TVBS is smaller than the dif-
ference between the corresponding filters. (a) . (b) .

Evaluation of the Smoother: The smoother versions of the
compared algorithms are evaluated in the same simulation of
(10) with skew- noise. The STVBS uses 30 and the TVBS 10
VB iterations, which were observed to provide convergence.
Fig. 7 shows that the STVBS outperforms the TVBS also at low
SNR, but the percentile differences at high SNR are smaller than
those of the corresponding filters.

VI. CONCLUSIONS

A filter and a smoother that take into account the skewness
and heavy-tailedness of the measurement noise are proposed.
The algorithms use the variational Bayes approximation. In the
presented computer simulations the proposed methods outper-
form the conventional symmetric Kalman-type algorithmswhen
skewness is present. The computational burden depends on the
measurement dimension and model parameters. In the presented
simulations the proposed filter has roughly 5 to 10 times the
Kalman filter’s computational cost.
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