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Perfect Gaussian Integer Sequences
of Arbitrary Length

Soo-Chang Pei, Life Fellow, IEEE, and Kuo-Wei Chang

Abstract—In this work, we describe some methods to generate
zero autocorrelation Gauss integer sequences of arbitrary length.
These methods can be combined with each other so that more
choices can be made.

Index Terms—Gauss integer sequence, zero autocorrelation.

I. INTRODUCTION

R ESENTLY the study of zero autocorrelation (ZAC) se-
quences, or perfect sequences, has become very popular,

because those sequences play important roles in modern com-
munication system such as CDMA [1], [2] and OFDM [3]. In
particular, due to arithmetic convenience, sequences with in-
teger value or Gaussian integer value, which in the form of
where , have been discussed many times [6], [8]–[10].
However, thesemethods all have some constraints. Hu’s method
can only be applied when the period length is even [6], Yang’s
method can only be applied when the length is odd prime [8],
and in [10], the length can only be when and are twin
primes. Although in [9], any arbitrary length of integer-valued
ZAC sequences can be achieved, these sequences form a finite
abelian group thus only a few number of sequences can be ob-
tained.
When considering whether a sequence if ZAC or not, a

smart way is to calculate its discrete Fourier transform (DFT).
Benedetto [4] has proven that a sequence is ZAC if and only if
its DFT is constant amplitude (CA). This property also gives us
a guide to construct ZAC, by calulating in frequency domain
and setting all values to be CA, then transform back to time
domain to accomplish ZAC. In [9] Ramanujan’s sum is intro-
duced to ensure that the result ZAC sequence is integer-valued.
We will extand that work to Gaussian integer.
Legendre symbol or sequence(LS)[11], [12] has a strong con-

nection to quadratic Gauss sum, which is also a summation of
complex roots of unity, like Ramanujan’s sum. The absolute
value of Gauss sum is [7], [11], which is not always an
integer, so we must add some terms. This method can compen-
sate Yang’s because that method has only 3 different values.
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In [8], Yang has invited reader to attack the problem when
is an odd composite number. We accept the challenge and

propose some methods to construct perfect Gaussian integer
sequences, from the naïve zero padding and convolution, to
decomposing into different groups. A Concrete example is
given as . Note that although is a product of
twin prime, our method is simpler and can generate more se-
quences than [10].
This paper is organized as follows. In Section II some new

methods for prime length to get more sequences will be in-
troduced. Combination of short prime length sequences into a
larger, composite length will be revealed in Section III. Finally
the conclusion is made in Section IV.

II. NOVEL METHODS FOR PRIME

Although this problem has been solved, as Yang’s method can
generate infinite number of ZAC sequences in gaussian integer,
the limitations of that approach are
1) The outcome has only 3 different values
2) The degree of freedom is only 2.
In this section we proposed two ways to compensate Yang’s

method. Both of them use the property of Legendre Sequences,
but the later can only be applied to prime.

A. Using Legendre Sequence and Gauss Sum When is Prime

Recall that when is prime, Legendre symbol is defined as

And the Gauss sum is defined as

A well known result [5] is that

In other words, the Fourier transform of Legendre Sequences is
almost CA, with the only exception on , the first point.
The amplitude is thus our goal is to find a Gaussian integer
and some integers , and such that

(1)

Then a sequence that

(2)

is CA, and the DFT of is ZAC in Gaussian integer. Before
we prove this let’s see some tiny examples of and

1070-9908 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This paper previously published in IEEE Signal Processing Letters



PEI AND CHANG: PERFECT GAUSSIAN INTEGER SEQUENCES OF ARBITRARY LENGTH 1041

Example II.1: For , the most trivial value we can
choose is , , and . Thus

As we can see, is CA and is with Gaussian integer
value. This example shows us does not necessary to be com-
plex.
Example II.2: . Let’s try a non-trivial value ,
,

From this example we can get a very different result from the
previous one. Note that has three alternatives , ,
and . They all give us different ZAC sequences.
Example II.3: , , ,

There are various way to construct infinite triples ( ) sat-
isfied (1). Let , where are integers. If we
choose , clearly the (1) will reduce to , and it
has infinite solutions. If is odd, we can choose any odd and
any even . Now (1) becomes

Since and are odd and is even, must be odd.
Let , then we can use and .
Similarly for any even and odd , we can find proper and
by the same trick.
We complete this subsection by proving the claim that

is ZAC with Gaussian integer value.
Proof: Since is CA by definition, thus is ZAC

by [4]. To prove they are all Gaussian integer, we actually give
a closed form. If

If

Either case the is in Gaussian integer value since is
Gaussian integer and , are integers.

B. Using GLS when is prime

When is prime, there is another way to increase the
degree of freedom by using Generalized Legendre Sequences
(GLS)[11]–[13]. GLS are originally applied to construct the
eigenvectors of discrete Fourier transform (DFT) and generate
a complete -dimensional orthogonal basis [13], because they
have the property that their Fourier transform is their conjugate
multiply a constant whose absolute value is . All the values
except the first one of GLS lies on unit circle, and when

we can choose the ones which only contains ,
in order to bound the sequences in gaussian integer. The detail
steps is described as follows:

1) Choose a GLS where the first value is 0 and the rest only
contain .

2) Take DFT of . Now we have a sequence that the first
value is still 0, but the absolute value of rest all equal to

.
3) The first value of can then be chosen by a Gaussian in-
teger satisfying , which always exists
by Fermat’s theorem. Now the sequence is constant ampli-
tude.

4) The DFT of y is a ZAC with Gaussian integer.
It is easy to prove this sequence is really in Gaussian integer.

Define

The sequence is actually

where , , , and all value in are with Gaussian integer, so
will be the sequence.
As a concrete example, assume and we choose a

GLS

And we choose since . Thus the
ZAC sequence is

This idea of this method can be extended by multiplying an
integer or a Gaussian integer in step 2, and then we can have
more choices in step 3. Let the length , then we
can find an integer or a Gaussian integer , satisfying

with some integer and , and multiply this number
to the GLS. The choices in step 3 can be doubled because

Thus by multiply different we can get different ZAC
sequences. This gives us infinite choices.
For instance, if , originally we can only choose

. When we multiply the
GLS by , then in step 3 we have to find

such that , so the choices we
have now are:

which are the original ones multiplyed by 5, and

since is also 325. Similarly, when we multiply the GLS
by , we have to find such that
, so the choices we have now are:

where four of them are the original ones multiplyed by .
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In summary, when is a prime, LS can help us construct many
interesting ZAC sequences in Gaussian integer. If is a
prime, then we can further use GLS to construct more.

III. GENERATING INFINITE SEQUENCES
FOR ARBITRARY LENGTH

In [9] a method for generating integer ZAC in arbitrary length
is proposed, but the drawback of that method is it can only

generate a few number of sequences. On the other hand, in
Section II we proposed methods using LS or GLS to obtain
infinite number of sequences, but it can only applied to prime
length. In this section we will introduce some methods to com-
bine the sequences. Thus we can take the advantages of both
sides, and get infinite number of sequences in arbitrary length.

A. Zero Padding and Convolution

First consider we factorize to be , where .
We will take in next subsection. The simplest way to
construct ZAC is by following these steps.
1) Take a ZAC from and .
2) Interpolate and zeros to these signals to get two
signals of length .

3) Convolution these two signals, then we get a ZAC.
Before we prove the claim, let see an example first.
Example III.1: Let and , reuse the examples in

our previous section. Take

And by Step2 we get

And finally we circular convolution these two signals and get

which is ZAC with Gaussian integer.
The proof is very easy. It is based three trivial facts.
1) After zero padding, the new signal is still ZAC.
2) Convolution of two signals with Gaussian integer is still a
signal with Gaussian integer.

3) If and is ZAC, then is also. For details see
[9]. The zero padding method can also be used to generate
2 Gaussian integer ZAC signals such that their cross-cor-
relation has many zeros, as in this example, and .
Recall that the cross-correlation of two signal and
can be defined as

So the cross-correlation of and is

The last equation is due to the ZAC property of . Thus
the cross-correlation of these two signals will be ,
which has 12 zeros.

B. Duplicate LS when

When , the zero padding method fails to gen-
erating “full” ZAC sequences. In other words, those ZAC se-
quences will have many zeros in them. In this section we will
fix this problem by revisiting LS.We assume in this sub-
section because when , we can use zero padding
method and devide , where , ,
etc. Since in [6] the even case has been solved, we assume

.
Recall that in the theory of DFT, the signal duplicated times

will transform into a zero padding spectrum multiplied by .
For example,

As we can see the is actually the zero padding version of
multiplied by 3.
Now we describe our method as follows.
1) Let be the LS duplicate times.
2) Find , , and satifying (1).
3) Then

is CA, and the DFT of is ZAC in Gaussian integer.
Note that this is a recursive definition while is the
same as (2). The proof is similar to the case so it is
omitted here. To illustrate the idea, let’s see an example.

Example III.2: Let , and , , ,
since is

The first iteration gives us

Now second (final) iteration eliminates the remaining zeros.

As this example points out, these steps are just eliminating
zeros. So in this sense we have many degrees of freedom. For
instance, we can change the sign of in second iteration, or use

to fill up the three zeros

One final words on dulpicated LS is that they are actually a
special case of GLS.
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C. Factorize and Prime-Factor Algorithm

The methods of zero padding and duplicated LS are very
simple and might be useful enough for many applications, but
theoretically more things can be done. Recall that DFT of size

can be done by taking DFT of size and seper-
ately [14], if , this property opens a door for
us to divide the signal into several groups, and make sure the
following ZAC condition holds
1) They are CA.
2) Each of them will transform to Gaussian integer.
For example, if we rewrite our one dimension signal

into

(3)

The original 6-point DFT is equivalent to perform a 3-point DFT
to each column and then 2-point DFT to each row. We do not
worry about 2-point DFT since it transforms Gaussian integer
into Gaussian integer, so if we ensure the outcome of 3-point
DFT is Gaussian integer, then the result will be also. The zero
padding method is actually a special case that makes (3) a rank
1 matrix, since the method is equivalent to the outer product of
two CA signals. As we have discussed in Section II, LS can also
be used to satisfy the condition, we will show an example later.
In general, when given an arbitrary length , the procedures

to generate ZAC sequence in Gaussian integer are
1) Divide into groups , where

2) For each group, use LS or GLS to ensure ZAC condition
holds

3) Take DFT
We now take an for example, step by step
Example III.3: The factors of 15 is 1,3,5,15. So we divide our

signal into 4 groups

We consider the last term first. There are totally 4 GLS can be
applied, namely

One can notice that they are actually outer product of LS (or
all one, which is GLS) of length 5 and 3. If we take DFT now,
the first will have integer gain, as it is Ramanujan’s Sum. The
second will have a gain, the third will have , and the
last will have
Here is the critical point. In theory our choices for may

be in the form of

but we shall remeber that we are constructing CA, so

where should be in the form of , should be in
the form of

, and should be in the form of

In practice we can use outer product instead of finding integers
to satisfy constraints all of the above. But here we are giving an
example to demonstrate that the solution exists and is not that
hard to find. Since

One possible outcome is

which is CA, and its Fourier transform

is in Gaussian integer. And this is not a rank 1 matrix.

IV. CONCLUSION

We propose several methods to generate zero autocorrelation
sequences in Gaussian integer. If the sequence length is prime
number, we can use Legendre symbol and provide more degree
of freedom than Yang’s method. If the sequence is composite,
we develop a general method to construct ZAC sequences. Zero
padding is one of the special cases of this method, and it is very
easy to implement.
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