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Multichannel Random Discrete Fractional
Fourier Transform
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Abstract—We propose a multichannel random discrete frac-
tional Fourier transform (MRFrFT) with random weighting
coefficients and partial transform kernel functions. First, the
weighting coefficients of each channel are randomized. Then, the
kernel functions, selected based on a choice scheme, are random-
ized using a group of random phase-only masks (RPOMs). The
proposed MRFrFT can be carried out both electronically and
optically, and its main features and properties have been given.
Numerical simulation about one-dimensional signal demonstrates
that the MRFrFT has an important feature that the magnitude
and phase of its output are both random. Moreover, the MRFrFT
of two-dimensional image can be viewed as a security enhanced
image encryption scheme due to the large key space and the
sensitivity to the private keys.
Index Terms—Chaotic logistic map, fractional Fourier trans-

form, image encryption, random phase mask.

I. INTRODUCTION

I N THE past decades, the fractional Fourier transform
(FrFT) has been regarded as a powerful tool in the fields

of signal processing [1]–[4] and image processing [5]–[8].
An effective eigen-decomposition-based definition of discrete
fractional Fourier transform (DFrFT) has been proposed by
Pei [9], which can be viewed as the approximate samples of
the continuous FrFT [1]. Some researchers have thoroughly
studied this definition and found that changing its eigenvalue
or eigenvector will create totally different transforms with
new properties and applications. Based on this idea, fruitful
expansions of the FrFT, for instance, the multiple-parameter
discrete fractional Fourier transform (MPDFrFT) [10], the
discrete fractional random transform (DFrNT) [11], and the
random discrete fractional Fourier transform (RDFrFT) [12],
have been presented. However, these expansions spend much
time when implementing them on a computer because their
kernel functions need to be recomputed once the transform
order is changed [13]. Unlike the FrFT, these expansions cannot
be implemented exactly in optics equipment because of the
difficulties of randomizing the eigenfunctions and eigenvalues
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in optical system [14], [15]. To implementing the random
FrFT in optics, Liu [14] presented a random fractional Fourier
transform (RFrFT) by randomizing the kernel function of the
continue FrFT using a couple mutually conjugated pure phase
masks. But it also suffers the same time-consuming problem as
other FrFT expansions and its key space is small when directly
using it in image encryption and decryption.
In this letter, we propose an efficient multichannel random

discrete fractional Fourier transform (MRFrFT) which is com-
pleted by three steps. First, the weighting coefficients of each
channel are randomized. Then, the partial kernel functions,
chosen by a choice mechanism that is completed based on
the logistic map [8], are randomized by a group of random
phase-only masks (RPOMs). The proposed MRFrFT can be
carried out on a computer rapidly with an advantage that its
kernel functions can be pre-computed and stored. Also it can be
implemented by optoelectronic equipment. The main features
and properties of the MRFrFT have been presented. Numerical
simulation about one-dimensional (1D) signal verifies that the
proposed MRFrFT has an important feature that the magnitude
and phase of its output are both random. Moreover, the MRFrFT
of two-dimensional (2D) image can be viewed as a security
enhanced image encryption scheme due to the large key space
and the sensitivity to the private keys.

II. PRELIMINARIES

The th-order DFrFT defined in [9] is:

(1)

where is the th-order discrete Fourier transform (DFT) Her-
mite-Gauss eigenvector, and for

is odd, for is even. is a di-
agonal matrix with diagonal entries corresponding to the eigen-
values for column eigenvectors in matrix , denotes the ma-
trix transpose.
Based on this definition, Yeh and Pei [13] developed a fast

computation method for the DFrFT. Assume be a -point
discrete signal, the th-order DFrFT of the signal is

(2)

where for is odd, for is
even, is the th-order DFrFT of signal . The weighting
coefficients are computed as:

(3)
where denotes a reverse DFT (Proof: see [13]).
From (2), the th-order DFrFT can be computed by a

linear combination of channels DFrFT . Since odd and
even are essentially the same, we only consider the odd case for
simplicity in the following.
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Fig. 1. Time-frequency denotation of and .

III. MULTICHANNEL RANDOM DISCRETE
FRACTIONAL FOURIER TRANSFORM

A. The Proposed MRFrFT
Inspired by the computation method of the DFrFT presented

in [13], we propose the MRFrFT by implementing the following
three steps.
Step 1. Randomize the weighting coefficients.

From (1) and (3), the th-order DFrFT matrix
can be computed by

(4)

where , are th-order DFrFT
matrices.
This implies that the DFrFT of any angle can be
computed by a weighted summation of the DFrFTs
with special angles. It is well known that the in-
terpretation of the FrFT is a rotation of signals in
the time-frequency plane [16], [17]. Therefore the
time-frequency denotation of and can be il-
lustrated by Fig. 1. In the parentheses are the corre-
sponding channel weighting coefficients.
In (4), the eigenvalue of is divided into the co-
efficients of every channel and the eigenvalues of
matrices . From [18], we have the conclusion
that for each eigenfunction, the corresponding eigen-
value has infinite choices, which suggests that they
can be chosen in an absolutely random way. Here,
we randomize the coefficients of every channel as
follows:

(5)

where are
random numbers whose values are independent of
. The random coefficients vector is denoted as

.
Step 2. Randomize the transform kernel function.

From (4), the th-channel kernel function with the
eigendecomposition form is

(6)

with
.

We randomize the kernel function as follows:

(7)

where are two
RPOMs used to confuse the corresponding kernel
function . are two mutual in-
dependent white noise matrices and uniformly
distributed in .
Based on Step 1 and Step 2, the MRFrFT can be
defined as

(8)

It must be noted that in (8), channels MRFrFT
need to produce RPOMs, which is time-con-
suming and sometimes unnecessary. This short-
coming motivates us to find a choice mechanism
which can randomly select several channels kernel
functions and then randomize them by (7). Step 3
gives a choice mechanism based on chaos mapping.

Step 3. A choice mechanism for selecting channels.
In this part, a choice mechanism based on pseudo-
random address sequence generated by the logistic
map is presented. The logistic map is a nonlinear
chaos function and very sensitive to the initial pa-
rameters. Its iterative form is written as

(9)

where , is a system parameter known
as bifurcation parameter. denotes the
iterative value and is the initial value. When

, the dynamical system is in
chaotic state. Slight variations of the initial param-
eter can yield a totally different random iterative
value, which is a non-periodic and non-converging
sequence over time.

Based on the feature of the logistic map, we use it to propose
a choice scheme for selecting channels.
1) Giving the system parameter and the initial value

, use (9) to generate a random sequence with
length . We will obtain a pseudorandom sequence

.
2) Sorting in ascending order, we will get a sorted sequence

, where the symbol
denotes the address code. That is, the elements values are
not changed but the positions are varied. For example, the
-th element in corresponds to the -th element in .

3) Giving an integer and discarding the pervious
value from the random sequences , we will obtain

.
4) A pseudorandom address sequence is generated as

.
5) Select the -th channel kernel matrices

and randomize them
by (7).

Use denotes the linear combination of the randomized
channels generated by step 3. It can be computed as

(10)
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Use denotes the linear combination of the rest channels. It
can be computed as

(11)

where
.

Therefore, the proposed MRFrFT matrix (8) is adjusted as:

(12)

Thus, the MRFrFT of a 1D discrete signal is computed as:

(13)

The transform kernel of the 2D MRFrFT is defined as

(14)

where denotes tensor product, and are the individual
fractional orders in two dimensions. For a 2D digital image ,
its MRFrFT can be computed as:

(15)

B. The Main Features and Properties of the MRFrFT
• The proposed MRFrFT is completed by carrying out three
steps and each step introduces random parameters which
can be used as the private keys in image encryption.
Thus, the randomness of the MRFrFT is guaranteed by
the random coefficients vector , the RPOMs,
and the logistic map parameters and the integer .
Therefore, the proposed MRFrFT has total
private keys.

• If , the kernel functions of all channels will be ran-
domized, and the MRFrFT will degrade into (8).

• If , the MRFrFT will degrade into random Fourier
transform (RFT) proposed in [18].

• Linearity. The MRFrFT is a linear transform,

(16)

Proof: From the linearity of the DFrFT and the construc-
tion process of the MRFrFT, this property can be proved triv-
ially.
• Parseval. The MRFrFT satisfy the Parseval theorem.

(17)

Proof: Because
are randomly chosen on the unit circle, and the RPOMs in (7) are
pure phases [14], combined the energy conservation property of
DFrFT, this property is tenable.

C. Discussion of the Computation Cost of the MRFrFT
When executing the proposed MRFrFT on a computer, the

kernel functions can be pre-computed
and stored. Once the transform order or the parameters are
changed, we only need to re-compute the coefficients of every
channel and the matrix multiplications between kernel functions
and the corresponding RPOMs. Therefore, the computation cost
of the MRFrFT is greatly reduced comparing with other FrFT
expansions. Note that the MRFrFT takes up memory space for
reducing the running time. Since the linear summation still takes

TABLE I
COMPARISON OF COMPUTATION TIME BETWEEN THE PROPOSED

MRFRFT AND FRFT EXPANSIONS

Fig. 2. Optoelectronic implementation of the MRFrFT.

multiplications, the computation complexity for each
transform signal is still just as the discussion in [13].
Tomake a comparison of running time quantitatively between

the MRFrFT and other FrFT expansions, we use the 2D image
with size to execute the following operators:

(18)

where , and denote the operators of
the FrFT expansions or the MRFrFT with different orders.
Table I records the calculating time of all transforms and verifies
that the computation cost of the MRFrFT is very much reduced.

D. Optoelectronic Implementation of the MRFrFT
The proposed MRFrFT can be carried out both electronically

and optically. Fig. 2 illustrates an optoelectronic hybrid system
in double optical paths with iterative mechanism. Lohmman’s
single lens configuration is used to perform the FrFT [15]. The
two spatial light modulators (SLM), which can display complex
data, are located at the two input planes and serve to display the
iterative results and . The RPOM1 and
RPOM2 controlled by a computer serve to display and

. The beam splitter cube (BSC) is used to split or com-
bine laser beam. At the output plane, the resultant function can
be recorded by a holographic scheme with a CCD and then fed
to a computer. After post processing in the computer with other
parameters, exact information on the amplitude and phase is re-
trieved and displayed in the SLM for the next iteration. The de-
cryption process can be implemented on a computer.
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Fig. 3. The MRFrFT of a 1D rectangular function. (a) The output magnitude,
(b) The output phase.

IV. NUMERICAL SIMULATIONS OF THE MRFRFT
In our numerical operations, we used a computer with

Intel-i5, 3.2 GHz CPU and 8G memory under Windows 7
system. The simulation is implemented in the environment
with MATLAB R2012b. We use the following parameters to
compute the MRFrFT operator defined in (12). For simplicity,
the random weighting coefficients defined in (5) is also pro-
duced based on the logistic map function (9) with parameters

, . defined in (10) is computed
with the parameters , , and .
That is, 7 channels are chosen to be randomized with 7 couple
PROMs that are produced from a random number generator in
MATLAB. For all of the numerical simulations in this paper,
we use the same parameters which can be viewed as the private
keys in image decryption process.
We use a rectangle function given as follows to simulate the

1D numerical results.

(19)

Here we have taken the number of sample points equal to 256.
By applying the process defined in (13), the MRFrFT of 1D rec-
tangle function is calculated and the numerical results are de-
picted in Fig 3. It demonstrates an important feature of the pro-
posed MRFrFT that the magnitude and phase of its output are
both random.
The proposed MRFrFT can be directly used in image encryp-

tion by executing (15). The security is guaranteed by large key
space composed by the random coefficients vector , the lo-
gistic map parameters and , and the RPOMs.
The decryption schematic is the inverse process of the image en-
cryption. Fig. 4 illustrates the image encryption and decryption
results by using a gray image “lena” with pixels. It
can be seen that slight variations of the keys will cause strong
damage to the decryption image and cannot identify them visu-
ally.
The security is also analyzed quantitatively by calculating the

mean square error (MSE) defined as

(20)
where are the size of the image, and
are the pixel values of the decrypted and the original image,
respectively.
Table II shows theMSEwith incorrect keys and verify that the

proposed method is sensitive to all of the private
keys.Fig. 5 compares the security between RDFrFT, RFrFT, and
MRFrFT, all of which can be directly used in image encryption,
from the results of the MSE. The x-axis represents the devi-
ation distance (in the interval with step size

Fig. 4. Results of image encryption and decryption with the MRFrFT. (a) Orig-
inal image, (b) encrypted image, (c) decrypted image with incorrect weighting
coefficients , (d) decrypted image with incorrect logistic map pa-
rameters , (e) decrypted image with a couple incorrect RPOMs
in the first chosen channel, (f) decrypted image with correct keys.

Fig. 5. Comparison of the MSE between the proposed MRFrFT and the FrFT
random expansions.

TABLE II
THE MSE OF THE PROPOSED MRFRFT WITH INCORRECT PARAMETERS

0.00008) to the correct transform order parameters. Fig. 5 indi-
cates that the MRFrFT is more sensitive to the variations of the
transform order, which means higher security level than other
FrFT random expansions. The above simulation results demon-
strate that the proposed encryption scheme has high security due
to the large key space and the sensitivity to the private keys.

V. CONCLUSION
In this letter, we propose an efficient MRFrFT with random

weighting coefficients and partial channel transform kernel
functions. It can be carried out both electronically and optically.
This proposed transform is also able to be used in color image
encryption and multi-image encryption with high security and
efficiency.
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