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Abstract—We consider wireless sensor networks (WSNs) used
for distributed estimation of unknown parameters. Due to the lim-
ited bandwidth, sensor nodes quantize their noisy observations be-
fore transmission to a fusion center (FC) for the estimation process.
In this letter, the correlation between observations is exploited to
reduce the mean-square error (MSE) of the distributed estimation.
Specifically, sensor nodes generate local predictions of their obser-
vations and then transmit the quantized prediction errors (innova-
tions) to the FC rather than the quantized observations. The ana-
lytic and numerical results show that transmitting the innovations
rather than the observations mitigates the effect of quantization
noise and hence reduces the MSE.

Index Terms—Correlation, mean square error, prediction, quan-
tization, wireless sensor networks.

I. INTRODUCTION

NE typical application of wireless sensor networks

(WSNs) is the distributed estimation of scalar parame-
ters using a fusion center (FC) (see, e.g., [1], and references
therein). In such applications, sensor nodes are deployed in
the area of interest in order to observe physical or environ-
mental conditions such as temperature, pressure, or humidity,
to name a few. The sensor node observations are transmitted
over multiple access channel (MAC) to the FC for estimating
the observed parameter. One challenge in implementing the
estimation at the FC is the limited communication bandwidth
between the sensor nodes and the FC. Thus, the observations
have to be quantized first before transmission. Different dis-
tributed estimation schemes with discrete transmit signals
have been studied in the literature. For example, a one-bit
quantizer is proposed in [2] where each sensor node performs
probabilistic local quantization for its observation. The authors
in [3] consider the quantization bits and power scheduling
problem for distributed estimation with quantized observations
to minimize the total transmit power while ensuring a given
mean-square error (MSE) performance.
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For typical WSNs observing a physical phenomenon, sensor
node observations are highly correlated due to the dense deploy-
ment of sensor nodes and the nature of the observed phenom-
enon. The correlation between sensor observations is exploited
in [4], [5] to achieve better routing and medium access control.

In addition, the correlation has also been utilized to improve
the performance of the distributed estimation with quantized
observations [6], [7]. The effect of the correlation between the
sensor node observations on the MSE performance of the dis-
tributed estimation is studied in [8].

In this paper, we utilize the following two constraints on the
sensor node observations to compress the transmitted informa-
tion from the sensor nodes to the FC:

* The sensor node observations are correlated.

* Due to the orthogonal multiple access communication na-

ture with the FC, sensor nodes overhear each other.

Specifically, each sensor node will use the transmissions
overheard from other sensor nodes to compress its transmission
and only transmit the innovative part of its measurement. This
compression will result in improved power efficiency and better
utilization of the bandwidth. To further improve the power
efficiency and resilience to additive noise, each sensor will
transmit a quantized and digitalized version of its innovation.
The effect of using the innovations for the distributed estimation
on the performance of the linear minimum mean-square error
(LMMSE) estimator is studied in this letter. Numerical results
confirm the performance improvement due to the proposed
scheme.

The notations used in the following are stated here. Small let-
ters, bold small letters, and bold capital letters designate scalars,
vectors, and matrices, respectively. If A is a matrix, then A7
and A ! denote the transpose and the inverse of A, respec-
tively. The matrix I is the identity matrix of an appropriate size.
diag(a) denotes a diagonal matrix formed from the vector a and
ay,) is the first k elements in the vector a. Finally, the statistical
expectation is denoted as E{-}.

II. SYSTEM MODEL

Consider a collection of K sensor nodes deployed in an area
of interest to observe a parameter # and communicate their
observations to a FC according to the system model shown
in Fig. 1. The observed parameter 6 is modeled as a scalar
Gaussian random variable with zero mean and variance 03. Let
x, be the k' noisy observation of the parameter 6, i.e.

T = 8 + ng, (D

where s, is the value of the &P sensor measurement and 7y, is
a spatially uncorrelated Gaussian observation noise with zero
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Fig. 1. System model of WSN consists of K sensor nodes and a FC for dis-
tributed estimation of a scalar parameter 6.

mean and variance ¢2,,. The correlation coefficient between the
kth sensor observation 2 and the observed parameter 8 (de-
noted by py, and referred to as the source-node correlation) and
the correlation coefficient between the two observations x; and
z; (denoted by py; and referred to as the inter-node correlation)
are respectively defined as

Pr — E{@lk} = E{st}, Pkl — E{:Lkll} = E{sksl}. (2)
We can write things more compactly using the source-node cor-
relation vector r = [py, pa, ..., pr|L and the inter-node corre-
lation matrix Rgs with py, ; as its (&, [) entry. Consequently, the
observation correlation matrix is given by Ryxx = Rgs + Rpy
where Rnn = 2,1 is the observation noise correlation matrix.

Each observation is converted into a digitally modulated
signal for transmission. Thus, the observation x, corre-
sponding to the kth sensor node, is quantized first into an L bits
message, i.e. the message assumes 2~ discrete values which
can be represented by L bits. Let g(x)) be the quantized ver-
sion of 2, with a range limited to [—W, W]. The quantization
range is divided into intervals with step size A = 2 /2L
and the observation zj, is rounded to the closest mid-point of
these small intervals!. The quantization noise in this case is
Fx = xp, — q(wy) with variance 0%, = A?/12. For fine quan-
tization, i.e. larger L, the quantization error Z; has negligible
correlation with the observation z[9].

Sensor nodes use time division multiple access (TDMA) to
transmit their messages to the FC using some convenient digital
modulation scheme. The received message y, at the FC can thus
be written as

yr = q(xr) + ve = 2 + T + vr, 3

where vy, is the demodulation error at the FC with variance ¢2,,.
The value of ¢2,, depends on the probability of error of the dig-
ital modulation scheme used for transmission, which is function
of the communication signal-to-noise ratio (SNR).

Having the messages y;, at the FC, the LMMSE estimator can
now be used to estimate € as

= Rj,Ryyy, )
where y £ [Y1,y2,--.,yx)" is the message vector, Rgy is the

correlation matrix between the received messages and the ob-
served parameter and Ry, is the message correlation matrix.

IFor Gaussian parameters, the quantizer captures almost all observation
values when we set W = 304, for small o, and the step size A in this case
would be the same for all sensor nodes.
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Note that E{yx68} = E{sr8} = p, and thus Ry, = r. More-
over, Ryy = Rxx + Rqq + Ryy, where Rgq = aqu and
R,, =021 represent the quantization error correlation matrix
and the demodulation error correlation matrix, respectively. The
matrix Ry is symmetric and diagonalizable and therefore the
inverse of Ry, exists. Finally, the LMMSE estimator can be
written as

6= I'T(R»xx + qu + va)71Y7 3)

and the corresponding MSE is

MSE = E{(8 — 6)*} = 02y — rT(Ryyx + Rqq + Ryyv) 'T.

6
Note that all the noise and demodulation error correlation ma-
trices are diagonal. Thus, the matrix Ry, would be a diag-
onal matrix when the message correlation matrix Ry is di-
agonalized which allows more convenient analysis. In the fol-
lowing, the information about correlation between sensor node
observations is exploited to generate orthogonal messages that
have diagonal correlation matrix and thus adapt the quantization
process to reduce the MSE.

III. EXPLOITING THE CORRELATION BETWEEN THE
OBSERVATIONS TO REDUCE THE ESTIMATION MSE

The aforementioned scheme implements the LMMSE in a
conventional way where all observations are treated equally. In-
tuitively, this is not an optimal scheme since some observations
may carry more information than others. Power and bit alloca-
tion are typically used to improve the MSE performance [3].
Here, we use a different method where the correlation between
observations is utilized to remove the redundant transmitted in-
formation from the different sensor nodes. Recall the fact that
the sensor nodes transmit their observations sequentially in a
TDMA arrangement. Hence, sensor nodes overhear each other
and each sensor node can process its local observation given the
received transmissions from other sensor nodes and the corre-
lation knowledge. Consequently, only the “new” part of the in-
formation or the innovation should be transmitted. This has the
potential to reduce the MSE of the distributed estimation even
with equal power allocation among sensor nodes. With this in
mind, the observation 24, can be expressed as

Q)

where Zy;, _1 is the part of zy that can be predicted from the
previous & — 1 sensor node observations and ey, is the innova-
tion in xg, i.e. the new part of 2 which is uncorrelated with
the previous observations. Therefore, at the kth sensor node, in-
stead of quantizing and transmitting the observation zy, only
its innovation, eg, is calculated and quantized, which results in
g(er) = ey + &, then transmitted.

Thus, the received signal at the FC from the k" sensor node
can be alternatively expressed as

Tk = Tglk-1 T+ €k

®

Now, the prediction should be based on the signals
received from the previous & — 1 sensor nodes, i.c.
&x_1) = [é1,€2,...,6x-1]7, which are the quantized in-
novations corrupted by demodulation errors. The prediction
Zy|k—1 should be generated in a way so that the elements of the

e = e + € + Vi
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innovation vector e = [eg, e, ...,ex]T are uncorrelated with

each other. The innovations are generated using Gram-Schmidt
procedure which produces an orthonormal set of signals out of
a given set. At the kth sensor node, the innovation ey, is given
by [10]

eg = &k — Thjk-1

—_— E{xkék 1} . E{I’kég}é E{Jfkél}é
'k — ~ - ~ 2= IS 1
B{&_} B{é} E{éf}
-1
=T — E {.’Ekéc(z;c_l)} (E {é(kfl)éc(z;c_l)}) é(kfl)
=Tk — bgflR;(tfl)é(k,né(k‘l) = Wgzk,
where
Ty =0,
Z é [éail), :ck]T = [él, éz, vy ékfl, ;L’k]T,

bk—l é E{l‘ké"(z;c_l)},
= [E{aré1}, E{aréa),. ... E{anér 1 )T,
= [E{zrer}, E{zrea).. .., E{zner1 )%,

= B{aeely )}, ©)
Re, 1600 1 £ diag {E{e1},E{e3},.. . E{éi_1}},
T
a T -1
wi 2 [-bI R o] (10)

We refer to Re,,_,,e,_;, as the innovation covariance matrix
and wy, as the prediction weights vector. Equation (10) is ob-
tained by exploiting the equality E{a:xé;} = E{zx(e; + &; +
vg)} = E{are;},Vj < k. Note that the innovation for the first
sensor node is the sensed signal itself, i.e. e; = 3.

Similar to the LMMSE in (4), the observed parameter can be
estimated based on the received innovations € as

g =r R, é, (11)
and the corresponding MSE in this case is
MSE' =E{(6 — 0)*} = 0% —re"Ryjrs,  (12)

where Rsz = R,
be written as

&.xyé(xy - 1he kth diagonal element of Reg can
E{&r} = B{(wize)*} + 0 = Wi zeag wi, + 0

T Ré(k—l)é(k—l) by 1

— 2
= w; bl o2 | VeI a$13)

and the correlation between the observed parameter § and the
innovation ey, is given by
re, = E{Hék} = E{H@k}
= E{6w{ 2z} = w} E{0z,}
wi [B{eg 1)}, ar]" =wilre, oy, il (14)

Note that the innovations ¢; do not have the same variance for
all sensor nodes. This difference in variances allows having a
different step size for the quantizer at each sensor node, i.e.,
Wi = 3y/E{é7} and A}, = 2W;, /2% which results in perfor-
mance improvement as shown in the following section.
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Fig.2. Achieved MSE as function of the number of quantization bits (X = 10,
do = 1000,0 = 1,02 /0%, = 15dB, (62+02)/0?, = 15dB,ando? = 1).

IV. NUMERICAL RESULTS

In this section, we confirm the performance analysis of the
proposed scheme by numerical simulations. Consider a WSN
that consists of K = 10 sensor nodes randomly located in a
square sensing area with side length of 100 m. Here, both the
observation SNR, o7 /o2 ,, and the communication SNR, (a2 +
a2)/a?,, are set to 15 dB for all sensor nodes, where o3 = 1.
The correlation coefficients p; and pg; are non-negative and
monotonically decreasing with distance. We assume that gy, and
pri follow exponential functions of the distance dj, between the
source and the kth sensor node and the distance dj; between the
kth and Ith sensor nodes, respectively, as [8],

pd) = e (&) a4y >0,0<a<2,de{dedal, (15)
where dy is the distance normalization and « is the correlation
decay rate, which are set to dg = 1000 and « = 1. The quan-
tizer at the sensor nodes uses L = 3 bits. The aforementioned
settings are assumed for all the following simulations unless
otherwise stated. All simulation results are averaged over 5000
independent Monte Carlo runs with the sensor nodes and the
observed parameter locations are independently generated for
each run according to a uniform distribution. For each of the fol-
lowing figures, the MSE performance of the LMMSE estimator
with both quantized observations and innovations are shown.
Also, the LMMSE estimator with unquantized observations is
included as a lower bound of the MSE performance in the pres-
ence of observation and demodulation noise only. The dashed
and solid lines refer to simulation and analytic results, respec-
tively. The quantized data are transmitted using PAM modula-
tion with a constellation of size 2%.

Fig. 2 shows the MSE as a function of the number of quanti-
zation bits L. As expected, the LMMSE estimator with unquan-
tized observations has the lowest MSE where only the observa-
tion and demodulation noise corrupt the observations. At lower
number of quantization bits (L = 2,3, and 4), the LMMSE es-
timator with quantized innovations outperforms the same esti-
mator with quantized observations. There is a deviation between
the simulation results and theoretical analysis at L = 2 for the
quantized observations case because the step size of the quan-
tizer at this value is large. Consequently, the quantization errors

This paper previously published in IEEE Signal Processing Letters
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Fig. 3. Achieved MSE as function of the number of sensor nodes (do = 1000,
a=1,03/0%, =15dB, ¢? = 1, and total communication SNR budget =
25 dB).

retain some correlation with the observations and the quanti-
zation error correlation matrix has some non-zero off-diagonal
elements. The MSE gap of the quantized observations and quan-
tized innovations based estimators almost vanishes at L = 5
where the quantization error becomes negligible in both cases.
Extra quantization bits in this case do not result in significant
improvement on the MSE performance since most of the distor-
tion comes from the observation and demodulation noise.

Fig 3 and Fig. 4 show the effect of the number of sensor nodes
K on the MSE performance for two different scenarios. In Fig 3,
we assume total communication power budget of 25 dB (for
all sensor nodes) and fixed individual bit budget of 3 bits (per
sensor node). In this scenario, increasing the number of sensor
nodes reduces the MSE even that lower communication power
is assigned for each node in this case (and consequently the
demodulation errors increase). Note that the quantization error
variance is the same for all sensor nodes since they use the same
number of quantization bits L = 3.

Fig. 4 shows the opposite scenario. Specifically, it shows the
MSE as function of the number of sensor nodes K with total
bit budget of 20 bits (for all sensor nodes) and fixed individual
communication power budget of 15 dB (per sensor node). Using
the quantized innovations for the estimation achieves lower
MSE than using the quantized observations. While increasing
the number of sensor nodes reduces the MSE for the three cases
in Fig. 4, larger number of sensor nodes results in lower number
of quantization bits per sensor node which results in increasing
MSE gap between the quantized observations and quantized
innovations estimators. A difference between the analytic and
simulation results at X = 10 (i.e., L = 2) is noticed here for
the quantized observations case as expected.

The previous results show the effect of having fixed budget
for the quantization bits and communication SNR on the MSE
performance. It can be concluded that as long as the number of
quantization bits per sensor node is more than about 4 bits, it
is better to distribute the power budget over larger number of
sensor nodes.
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Fig. 4. Achieved MSE as function of the sensor nodes (dy = 1000, o = 1,
o3/c*, = 15dB, (62 4+ 62)/c?, = 15 dB, 62 = 1, and network bits
budget = 20 bits).

V. CONCLUSIONS

In this letter, we introduced a distributed estimation scheme
utilizing the knowledge of the correlation between sensor node
observations. The innovations in sensor node observations are
locally predicted and transmitted to the FC. The innovations
have smaller signal range which reduces the quantization error
for the same number of bits as compared to the original obser-
vations. An improvement in the MSE performance was found in
this case for low bit. It is also shown that observation noise and
quantization errors degrade the MSE performance more than de-
modulation errors when the number of sensor nodes increases.
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