
IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 9, SEPTEMBER 2015 1497

Cramér–Rao Bound for Sparse Signals Fitting the
Low-Rank Model with Small Number of Parameters

Mahdi Shaghaghi, Student Member, IEEE, and Sergiy A. Vorobyov, Senior Member, IEEE

Abstract—In this letter, we consider signals with a low-rank co-
variance matrix which reside in a low-dimensional subspace and
can be written in terms of a finite (small) number of parameters.
Although such signals do not necessarily have a sparse representa-
tion in a finite basis, they possess a sparse structure which makes
it possible to recover the signal from compressed measurements.
We study the statistical performance bound for parameter esti-
mation in the low-rank signal model from compressed measure-
ments. Specifically, we derive the Cramér-Rao bound (CRB) for
a generic low-rank model and we show that the number of com-
pressed samples needs to be larger than the number of sources for
the existence of an unbiased estimator with finite estimation vari-
ance. We further consider the applications to direction-of-arrival
(DOA) and spectral estimation which fit into the low-rank signal
model. We also investigate the effect of compression on the CRB by
considering numerical examples of the DOA estimation scenario,
and show how the CRB increases by increasing the compression or
equivalently reducing the number of compressed samples.

Index Terms—Compressed sensing, Cramér–Rao bound, DOA
estimation, low-rank model, spectral estimation.

I. INTRODUCTION

S IGNALS with sparse representations can be recovered
from much less number of measurements than the number

of samples given by the Nyquist rate using compressed sensing
(CS) methods [1]–[3]. Such measurements can be obtained
by correlating the signal with a number of sensing waveforms
[4]–[9]. The recovering algorithms for the signals from such
measurements exploit the sparsity of the signals in a proper
basis (see [3], [10]–[17] to mention a few existing algorithms).
There are signals which inherently possess a sparse structure

meaning that they can be defined by a small number of parame-
ters. However, such signals may not necessarily be represented
as sparse signals using a proper finite basis, i.e., there may not
exist or be known a finite basis such that the transformation of
the signal to that basis results in a small number of non-zero co-
efficients. For example, consider a signal composed of a linear
combination of sinusoids. Such a signal generates sparse co-
efficients by the discrete-time Fourier transform (DTFT), but
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its representation in the Fourier basis obtained by the discrete
Fourier transform (DFT) exhibits frequency leakage [18]. Al-
though the DTFT is a proper transform, as it results in a small
number of non-zero coefficients for the considered signal, it is
not a finite basis and cannot be used in conventional CS recovery
methods which rely on a finite sparsity basis. Suchmethods have
poor performance for such signals if the DFT basis is used [19].
We consider a general class of sparse signals which are repre-
sented by a small number of parameters in a low-rank signal
model. Our goal is to study the performance bounds for the es-
timation of unknown parameters and also the reconstruction of
this class of signals from compressed measurements.
The Cramér-Rao bound (CRB) [20] for estimating a sparse

parameter vector from compressed measurements has been
studied in [21]. However, the signal model in [21] considers
signals which can be represented by a finite sparsity basis. The
CRB has been computed using approaches from the theory of
constrained CRB in [22] and [23]. The constrained CRB for
estimating a low-rank matrix from compressed measurements
has been studied in [24]. Here we consider a different signal
model which does not involve the constraint on the rank of
a matrix. The CRB for parameter estimation in compressed
sensing has been also studied in [25]–[27]. In [25], the signal
is assumed to be a function of real-valued parameters, and it
is not necessarily sparse in a finite basis. The CRB has been
computed and bounded for different realizations of the mea-
surement matrix. The signal model in [26] and [27] is different
from the one studied here in two aspects. First, in [26] and [27],
a noiseless signal is first compressed and then white noise is
added to the compressed signal. In contrast, we first add the
noise to the signal and then compress. This results in a different
distribution for the compressed measurements. Second, in [26]
and [27], the signal is a vector which depends on a number of
parameters, whereas in this letter, the signal is composed of
a parametrized matrix multiplied by a vector of coefficients.
This structure of the signal enables us to derive a closed-form
expression for the CRB of the parameters.
In this letter, we extend the results of [25] for a low-rank

signal model. We derive the CRB for real and complex-valued
parameters. Furthermore, multiple signal snapshots are con-
sidered, whereas in [25], the signal model consists of only a
single signal snapshot. We also study the minimum number
of compressed samples required for unbiased estimation with
finite variance. Furthermore, the applications to direction-of-ar-
rival (DOA) and spectral estimation which fit into the low-rank
signal model are also studied. Finally, numerical examples for
the DOA estimation problem are given to illustrate the effect
of compression on the CRB.
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II. SIGNAL MODEL

Consider the signal at time instant to be of
the form

(1)

where is a tall matrix (the number of rows is much
larger than the number of columns), is a vector
containing unknown amplitudes, and . A practically
important example of is given in Section V. Since is a tall
matrix, the covariance matrix of the signal is a low-rank matrix.
Therefore, such a signal is called low-rank. Matrix can be
fully known, known up to a number of unknown parameters,
or completely unknown. In this letter, we study the second case
where matrix has a known structure, but it contains number
of unknown parameters where

stands for the transposition operator.
Let the vector of the measurements be given by

(2)

where is the measurement matrix with
. The additive noise is assumed to have

the circularly-symmetric complex jointly-Gaussian distribution
where is the identity matrix of size and

is the noise power. No specific structure for the measure-
ment matrix needs to be considered in our derivations. It is
because is assumed to be known at the signal reconstruction
stage, and therefore, it is treated as a deterministic matrix in our
derivations. As a result, irrespective to how is generated, the
measurement noise has Gaussian distribution

where .

III. DERIVATION OF THE CRB

In this section, we derive the CRB for the signal model given
by (1) and (2).
First, let the vector of parameters be defined as

(3)

where and represent the real and imaginary parts of
, respectively.

The likelihood function of the compressed measurements (2)
is given by

(4)

where and stands for the Hermitian transposition
operator. The log-likelihood function can be found by taking the
natural logarithm of (4) as

(5)

For brevity, the notation will be used in the rest of the letter
to refer to the log-likelihood function (5). The Fisher informa-
tion matrix (FIM) is given by

(6)

where . The CRB covariance matrix for the
vector of parameters is then given by

(7)

The derivatives of the with respect to and are given
by

(8)

and

(9)

where and stand for the real part and imaginary
part operators, respectively. Recall that is
the measurement noise introduced in (2).
Note that has a known structure and contains unknown

parameters . Therefore, the derivative of the with
respect to for can be found as

(10)

The derivatives of the with respect to the whole vector
can be then written in matrix form as

(11)

where the matrix is given by

(12)

with standing for the Kronecker product.
To proceed, we use the following identities [28]. For two ar-

bitrary complex vectors and , we have

(13)

(14)

(15)
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Using (13), (14), (15), and the fact that for

(16)
(17)

where denotes the Kronecker delta, we can compute the
submatrices of as

(18)

(19)

(20)

(21)

(22)

(23)

Then, can be found as

. . .
... (24)

where and stand for the real and imaginary parts of a
matrix, and

(25)
(26)

(27)

It is shown in [28] that for FIM with the structure given in (24),
the CRB covariance matrix for is given by

(28)

Using (25)–(28), the CRB for can be found in closed-form as

(29)

Given , the covariance matrix of any unbiased estimator
of , i.e., , satisfies the inequality

(30)

The signal can be written as

(31)

The derivative of with respect to the vector of unknown
parameters is given by

(32)

where is a row vector of length with all its elements equal
to zero except for the -th element which is equal to 1. Finally,
by summing over the diagonal elements of (30), we obtain

(33)

Similar to (29), the results in (32) and (33) can also be regarded
as closed-form as they can be used for analysis, fast computa-
tions, and getting insights without requiring Monte-Carlo sim-
ulations as shown in the next section. It is worth noting that the
derived CRB (especially (29)) can be also used for selecting/op-
timizing the measurement matrix as the CRB depends on a
specific selection of .

IV. MINIMUM NUMBER OF COMPRESSED SAMPLES

In this section, we show that if the number of compressed
samples is less than or equal to the number of sources (
), the FIM is singular. It is shown in [29] that a sin-

gular FIM means that unbiased estimation of the entire param-
eter vector with finite variance is impossible.
Let us start with the case that . In this case, we

have since . As a result, we also
have (see (25)), and therefore, is singular.
Consequently, there exists a nonzero vector
such that . Therefore, , which
can be written in matrix form as

(34)

Let . Finally, using (24), we
have , which means that has a zero eigen-
value, and therefore, it is singular. For the case that ,
if , the singularity of the FIM follows from the
discussion above.
Now, consider the case that is full-rank. Thus, is invert-

ible. Consider the structure of in (24) and let the block
of all the real and imaginary parts of be denoted by . It is
shown in [28] that for an invertible matrix , matrix is also
invertible. The Schur complement of denoted by is
equal to the inverse of the CRB covariancematrix for as given
in (29). Matrix is invertible since it is square and full-rank.
Therefore, we have

(35)

As a result, (see (29)). According to the rank ad-
ditivity formula [30], we have

(36)
Therefore, is rank-deficient or equivalently singular.
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Remark: As shown above, if the number of compressed sam-
ples is less than or equal to the number of sources, the FIM
is necessarily singular. However, if the number of compressed
samples increases, it does not necessarily result in a non-sin-
gular FIM for a few more samples. Thus, the converse does not
hold in general. The minimum number of compressed samples
for satisfactory performance depends on a specific performance
criterion and the estimation method used. For example, the min-
imum number of compressed samples can be chosen to bound
the probability of a subspace swap [31] or to bound the error of
signal subspace estimation [32]. The required number of com-
pressed samples can also be studied from a geometric point of
view [33].

V. APPLICATION EXAMPLES

For the problems of DOA and spectral estimation,
consists of the amplitudes of number of sources at time
instant . The number of parameters in is also equal to
the number of sources, i.e., . Furthermore, has the
structure given by

(37)

where for is the steering vector corre-
sponding to the -th source. Let us define as the derivative
of with respect to , i.e., . Then,
given by (12) can be simplified to

(38)

where is the -th element of and the operator
converts a vector into a diagonal matrix.

VI. NUMERICAL RESULTS

In this section, the application of the derived CRB formulas
for the problem of DOA estimation is illustrated. Our goal is
to investigate the performance bounds for unbiased estimators
when the signal is compressed at different rates.
Consider equally spaced sources impinging on a

uniform linear array of antenna elements from direc-
tions

. The steering vector of the array is given
by

(39)

where is the interelement spacing of the array and is the
wavelength of the plane wave impinging on the array. In our
numerical example, is set to 0.5. The number of snapshots
is also set to . Each source vector is considered to
be independent from the source vectors at other time instances
and is drawn from the circularly-symmetric complex jointly-

Fig. 1. CRB for estimating .

Gaussian distribution . The signal-to-noise ratio
(SNR) is set to dB. The source
vectors are drawn once and kept unchanged.
Fig. 1 shows the CRB for estimating

versus the number of compressed samples . For the case
when , the measurement matrix is set to the
identity matrix. Then, is initialized for by drawing
samples from the Gaussian distribution . For the rest
of values, the first rows of the initial matrix are scaled
by and used to obtain the CRB.
As expected, it can be seen in Fig. 1 that the CRB increases

as the number of compressed samples reduces. The min-
imum number of compressed samples is set to which
is equal to the number of sources plus one ( ). As shown
in Section IV, if the number of compressed samples is equal to
or less than the number of sources, there can be no unbiased es-
timator with a finite estimation variance. Otherwise, if the CRB
exists, there also exist estimators [18] that achieve it.

VII. CONCLUSION

The class of signals fitting a low-rank signal model has been
considered in this letter. Such signals are inherently sparse
according to the signal model and can be recovered from
compressed measurements. We have studied the performance
bounds for unbiased estimators of parameters of such low-rank
signal model from compressed samples. The Cramér-Rao
bound has been derived for a generic low-rank model and it has
been shown that the number of compressed samples needs to
be at least larger than the number of sources for the existence
of an unbiased estimator with finite variance. Furthermore, the
applications to DOA and spectral estimation have been consid-
ered. Numerical examples have been also given to illustrate the
effect of compression on the CRB. It has been shown how the
CRB increases until the point where the number of compressed
samples is larger than the number of sources. For lower number
of compressed samples, the CRB becomes unbounded.
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