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Robustness Analysis of Structured Ma-
trix Factorization via Self-Dictionary
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Abstract—We are interested in a low-rank matrix factorization
problem where one of the matrix factors has a special structure;
specifically, its columns live in the unit simplex. This problem finds
applications in diverse areas such as hyperspectral unmixing,
video summarization, spectrum sensing, and blind speech separa-
tion. Prior works showed that such a factorization problem can
be formulated as a self-dictionary sparse optimization problem
under some assumptions that are considered realistic in many
applications, and convex mixed norms were employed as optimiza-
tion surrogates to realize the factorization in practice. Numerical
results have shown that the mixed-norm approach demonstrates
promising performance. In this letter, we conduct performance
analysis of the mixed-norm approach under noise perturbations.
Our result shows that using a convex mixed norm can indeed yield
provably good solutions. More importantly, we also show that
using nonconvex mixed (quasi) norms is more advantageous in
terms of robustness against noise.
Index Terms—Matrix factorization, performance analysis, self-

dictionary sparse optimization.

I. INTRODUCTION

I N SIGNAL processing and machine learning, there are sce-
narios in which the measured data points can be modeled as

convex combinations of some vectors; i.e., for the th measured
data point , we have

(1)

where is a basis matrix with
, and is a coefficient vector that satisfies

(2)

One particular example for which the above model applies is
hyperspectral unmixing (HU) of remotely sensed hyperspectral
images [1], [2]. There, is a high dimensional pixel measured
at multiple spectral bands, ’s denote the spectral signatures
of the materials that constitute the pixels, and denotes the
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fractions of the materials contained in pixel , which is known
to satisfy (2) by nature of the application. Another example is
nonnegative matrix factorization (NMF), with applications such
as text mining and document clustering. There, we have seen
(1)–(2) being used tomodel theNMF problem [3]. Recently, this
signal model also finds applications in blind source separation
[4], power spectrum sensing [5], [6], and video summarization
[7]. In the above applications, we are interested in recovering
and/or from ; e.g., in HU we desire to extract
the spectral signatures of the materials and their portions in each
pixel. Estimating and can be viewed as a structured low-
rank matrix factorization problem that aims at factoring the data
matrix into and , where
the columns of are constrained to lie in the unit simplex.
For the aforementioned factorization problem in the noiseless

case (i.e., ), it was shown that the identifiability of
and can be guaranteed up to an ordering permutation if
satisfies a special condition, namely, that the columns of

appear in . This condition is formally described as follows.

There exist indices such that
the unit vector with the

th element being one

Notice that, under and in the noiseless case, recovering
boils down to identifying , since ,
where denotes the submatrix of consisting of the columns
indexed by . In the noisy case, if the noise is below a certain
level, can still serve as a good estimate of ; after ob-
taining , can be easily estimated by solving a constrained
least squares problem (cf. (1)–(2)). In fact, has been rec-
ognized as a reasonable and useful assumption in many areas,
and it has different names in different contexts, such as local
dominance in image and speech separation [4], [8], pure pixel
assumption in HU [1], [9], and separability condition in NMF
[3]. is considered particularly meaningful in applications
where some data points living in a rank-one subspace can be
found. Taking HU as an example, since there are pixels con-
sisting of only one material in many cases, is considered a
mild assumption.
A number of algorithms and approaches have been proposed

to identify ; see [1], [2] for comprehensive surveys. Among
the various approaches, we are interested in a recently proposed
approach that uses sparse representation. To be specific, under

, identifying amounts to finding a few columns of
that can represent all other columns of by convex combina-
tions [7], [10]. Hence, the formulated problem is similar to the
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multiple measurement vectors (MMV) problem in compressive
sensing [11], which selects a basis from an over-complete dic-
tionary to represent a set of measurement vectors. The main dif-
ference is that the over-complete dictionary here is the data ma-
trix itself, resulting in the so-called self-dictionary MMV (SD-
MMV) formulation [9], [12].
Like MMV, SD-MMV is a cardinality optimization problem,

which is computationally hard. Greedy pursuits were proposed
in [9], [12] to tackle the SD-MMV problem, and robustness
analysis in the presence of noise was presented. Another line of
works [13]–[15] considered formulations that can be regarded
as variants of SD-MMV, and relaxed them to linear programs.
There, robustness in the noisy case was also shown. On the other
hand, although mixed norm-based sparse optimization is con-
sidered ‘natural’ for basis selection-like problems [16], [17],
and its application to SD-MMV indeed demonstrated empir-
ically good performance in practice [10], [18], its robustness
analysis against noise has not been investigated. In this work, we
consider performance analysis of mixed norm-based self-dictio-
nary sparse optimization. Specifically, we employ the convex
mixed norm adopted in [10] and its nonconvex counterpart as
optimization surrogates for SD-MMV, and analyze their perfor-
mance in the presence of bounded noise. We show that, using
such surrogates, two noise-robust variants of the SD-MMV for-
mulation are theoretically guaranteed to identify perfectly, if
the noise is below a certain level. Notice that nonconvex mixed
norms have not been considered for SD-MMV before, and our
results are the first to show that employing nonconvex optimiza-
tion surrogates can lead to provably better results. Numerical
results are presented to support our analysis.

II. SD-MMV SPARSE OPTIMIZATION

We consider the following data model,

(3)

where and are defined as before, and
is noise. The columns of are assumed to be bounded, i.e.,

, where . As reviewed previously, our aim is
to identify under the assumption in . To
this end, consider the following SD-MMV formulation [9]:

(4)

Here, counts the number of the non-zero rows of ,
denotes the th column of , and is given. Problem

(4) is called a self-dictionary sparse formulation because is
used as a dictionary to perform sparse optimization. To explain
how SD-MMV leads to identification of , let us assume that,
without loss of generality, . It can be shown
that, when noise is absent and , Problem (4) has an optimal
solution [9]:

(5)

(where is the true coefficient matrix in (3)). This means that
can be identified by inspecting the non-zero rows of . In

addition, it was shown in [9] that in (5) remains being the
optimal solution to (4) in the presence of noise under some con-
ditions. Nevertheless, dealing with the optimization objective

is hard. Here, we are interested in the following ap-
proximation:

(6)

where , , with being the th
row of . Note that is called the mixed norm, and
is convex for and ; otherwise it is a quasi-norm
and is nonconvex. Particularly, the mixed norm, , is
widely used to approximate regular MMV [16] and SD-MMV
[7], [10], [18].
In this letter, we focus on the following analysis problem: an-

alyze conditions under which the solution of Problem (6) guar-
antees perfect recovery of in the presence of noise. Our anal-
ysis will concentrate on , , which covers both
convex and nonconvex mixed (quasi-) norm optimization.
We noticed that although Problem (6) has not been explicitly

considered in the literature, the following related formulation
was popularly considered in practice [7], [10], [18], [19]:

(7)

with and . In this work, we will also analyze the
performance of (7) with and .

III. MAIN RESULTS
We first consider characterizing the solution to Problem (6)

with and . Intuitively, for a solution , if
for are significant while for , can

be identified by taking the indices of the rows with large norms.
With this in mind, let us first define

where is the submatrix of with being taken away,
and

where denotes the th entry of . We show the fol-
lowing result:
Theorem 1: Let be an optimal solution to Problem (6) with

and , and let denote its th row. Assume
that and . Then, under , satisfies

and

where
By Theorem 1, when is small and less than one, can be

easily identified by taking the indices corresponding to ’s
such that , since the other rows are close to zero. It
also says that using a small can greatly suppress for

, when and are reasonably small–and this allows us to
identify rows with ‘significant’ norms much easier. We also see
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that the result in Theorem 1 is consistent with the physical inter-
pretations of and . Simply speaking, if is large,
the columns of are far away from each other on the affine set
spanned by , resulting in a ‘well-conditioned’ . In
addition, if is small, it means that ’s for all are far
away from the unit vectors so that it is easy to distinguish
(or, for ) from for . Therefore, a large
and a small present an ‘easy case’ for identifying .
For Problem (7), we also show that

Theorem 2:Assume that is an optimal solution to Problem
(7) with and , that and are defined
as before, and that . Then, under , we have

and

where the constant .
The result in Theorem 2 reflects the intuition of choosing : A

small encourages the row-sparsity of the solution, and a large
makes the solution concentrate more on data fitting accuracy.

Another observation is that the upper bound of for
is scaled by , which is less favorable than that in Theorem

1. Particularly, if
(which may happen when or is large), the upper bound is
very loose when is small – and this implies that using
may not be helpful when noise is severe.

IV. PROOF OF THE THEOREMS

A. Proof of Theorem 1
We show Theorem 1 step by step. To simplify the notations,

we assume that without loss of generality.
Step 1): For any feasible solution of Problem (6), we consider

. We see that, by the triangle inequality,

(8)
Notice that, also by the triangle inequality and the nonnegativity
of , we have

(9)

where the second inequality results from the sum-to-one prop-
erty of . Combining (8)–(9) and the sphere constraint in (6),
we see that

(10)

Step 2): Nowwe show that is also lower bounded
following the insight of Lemma 17 in [14], with proper modifi-
cations. Since for under the assumption
of , we have

where denotes a submatrix of with the th row being
taken away. It can be verified that . Now, suppose
that . Consider

(11)

Let , which can be shown to satisfy and
. Hence, we have

(12)

by the definition of . Now, by Eq. (10), we have

(13)

Also notice that

(14)

where the inequality is obtained by the assumption that
for and the fact that for and .

Thus, combining (13)–(14), we see that for is
lower bounded:

(15)

The above bound is derived for the case of . For ,
(15) is still valid; this can be seen from (14).
Step 3): The proof of this step is based on the observation that,
under , is a feasible solution to Problem
(6) [9]. Notice that it is obvious for .
Hence, has to be satisfied. Consequently,
for , we have

B. Proof of Theorem 2
Let us define the objective value of Problem (7) for

a given feasible . Apparently, we have ,
where is defined as before. Since we know
, it is easy to see that . Hence, for

any satisfying , we get

Thus, for , we have

(16)
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Fig. 1. yielded by the proposed criterion with different ’s. The
dot lines correspond to the indices belonging to .

where (16) follows from (12). Consequently, we see that

following the same derivation of obtaining (15) from (12).
On the other hand, since ,

has to be satisfied. Rear-
ranging the above terms leads to

V. NUMERICAL RESULTS
In this section, we provide numerical results to support our

analysis. To deal with the optimization problems for ,
we employ a successive convex approximation approach fol-
lowing the insight in [20]. Due to space limitation, we only de-
scribe the key steps concisely. For Problem (6), at each itera-
tion, we solve a weighted problem with the cost function
being under the same constraints in (6), where

and , and denotes the
current solution of . By solving this subproblem, we calculate
a new , and solve another weighted subproblem until some
stopping criterion is satisfied. For each subproblem, we solve
it by the alternating direction method of multipliers [21]. For
Problem (7), the same iterative reweighting technique can be
applied.
Fig. 1 shows an illustrative example, where the elements of

follow the uniform distribution between zero
and one, and for is generated following the
uniform Dirichlet distribution; are then manually
set to unit vectors so that is satisfied. The noise vector

follows the zero-mean i.i.d. Gaussian distribution with vari-
ance . The signal to noise ratio (SNR, which is defined by
SNR ) is set to 15 dB. We apply the formu-
lation in (6) with , 0.01 and 0.0001 and set fol-
lowing Theorem 1. We see that when , ’s for
admit most significant values; however, some for
are visible. Using , the visible residues are success-
fully suppressed, which is consistent to the result in Theorem 1.
By using , the obtained result is very close to the
groundtruth.
In Fig. 2, we consider the HU application, and use

real hyperspectral signatures as the columns of for a

Fig. 2. The performance scores of the algorithms.

Fig. 3. The performance scores of the algorithms; .

Monte Carlo Simulation. The signatures are selected from
the U.S. Geology Survey (U.S.G.S.) library [22]. After
solving Problem (6), we select a set of indices, , by taking
the indices of the rows with . We define
Performance Score to measure the perfor-
mance, where and . The first term
in the denominator counts the correctly identified indices and
the second discounts the over-estimated ones. Notice that the
performance score is between zero and one, and one is the best
that an algorithm can obtain, indicating . We benchmark
our algorithm against a greedy SD-MMV algorithm called

SD-SOMP [9]. We set , and
respectively, and average the result from 100 independent
trials. We see that the mixed-norm approach outperforms the
greedy pursuit under all the SNRs. Particularly, the one using
a nonconvex surrogate exhibits the best performance. We also
apply the formulation in (7) under the same problem settings,
and the result is shown in Fig. 3. We see that using yields
better performance scores than that of using when

dB. This also verifies our analysis: Using
may not be helpful when or is large under this formulation.

VI. CONCLUSION

In this letter, we analyzed the performance of mixed-norm
SD-MMV optimization for structured matrix factorization, and
showed that they are provably robust to bounded noise. Our
research also showed that using the nonconvex quasi-
norm can lead to better results under some conditions.
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