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Abstract—This letter considers multi-input single-output
(MISO) downlink multicasting with finite-alphabet inputs when
perfect channel state information is known at the transmitter.
Two advanced transmit schemes, namely the beamformed (BF)
Alamouti scheme and the stochastic beamforming (SBF) scheme,
for maximizing the finite-alphabet-constrained multicast rate are
studied. We show that the transmit optimization for these two
schemes can be formulated as an SNR-based max-min-fair (MMF)
problem with Gaussian inputs, which can be handled via the
semidefinite relaxation (SDR) technique. Apart from transmit op-
timization, we analyzed the rate performance of the two schemes.
Our analytical results show that for BF Alamouti, the multicast
rate degrades with the number of users at a rate of , which
is better than the traditional transmit beamforming scheme. For
SBF, the multicast rate degradation is less sensitive to the increase
in the number of users and outperforms BF Alamouti for large

. All the results were verified by numerical simulations.
Index Terms—Finite-alphabet input, multicast, semidefinite re-

laxation (SDR), transmit beamforming.

I. INTRODUCTION

A S an efficient way of delivering common information to
multiple users simultaneously, transmit beamforming for

physical-layer multicasting has received considerable attention
in the last decade [1]. The signal-to-noise ratio (SNR)-based
max-min-fair (MMF) formulation, together with the semidefi-
nite relaxation (SDR) technique [1], has been demonstrated to
offer a reasonably good multicast rate; see [2] and the refer-
ences therein. In our recent work [3], extensions to rank-two
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beamforming and stochastic beamforming were proposed
to further improve the multicast rate, especially for those
large-scale multicast systems [4]. We should mention that in
existing beamforming studies, Gaussian signaling is usually
assumed. While such an assumption is crucial to quantifying
the limit of the system, it may not be adequate for practical
systems as they usually involve non-Gaussian finite-alphabet
inputs, such as -PSK and -QAM. Recently, there has been
a growing interest in transmit optimizations with non-Gaussian,
finite-alphabet inputs; notable works include [5]–[9] on various
single/multi-user MIMO transceiver designs.
In this letter, driven by practical considerations, we focus

on the scenario of multiuser multi-input single-output (MISO)
downlink multicasting with finite-alphabet inputs. We assume
that perfect channel state information is known at the transmitter
and our goal is to maximize the finite-alphabet-constrained
multicast rate by judiciously designing the transmit schemes.
As the main contribution of this letter, two transmit schemes
are investigated—beamformed (BF) Alamouti and stochastic
beamforming (SBF). For the proposed transmit schemes, by
converting the MISO channel into an equivalent single-input
single-output (SISO) one, we show that the finite-alphabet-con-
strained multicast rate optimization problems can both be
turned into the classic SNR-based MMF problem with Gaussian
inputs. Hence, the semidefinite relaxation (SDR) technique [10]
can be employed to deliver an (approximate) solution for our
considered problem. To quantify the performance of the BF
Alamouti and SBF schemes, we study their approximation ac-
curacy—i.e., the rate gap between the SDR-based approximate
solution and the optimal solution to the SDR problem. Building
upon existing SDR approximation results [1], [3], we derive
analytic rate gaps of the two schemes under finite-alphabet
inputs. In particular, our results reveal that the BF Alamouti and
SBF schemes are generally better than transmit beamforming.
Moreover, BF Alamouti is suitable for small number of users
while SBF can achieve better rate performance for large number
of users. All these results are new for MISO multicasting with
finite-alphabet inputs and they are consistent with and comple-
ment those in [3], where Gaussian inputs are assumed.

II. THE BEAMFORMED ALAMOUTI SCHEME

A. System Model and Problem Statement
Consider amulti-userMISO downlink, where amulti-antenna

base station sends common information to single-antenna
users. Assuming quasi-static and flat-fading channels, the re-
ceive signal at user is given by

(1)
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where is the channel vector from an -antenna base
station to the th user, represents the data frame length,

is the additive white Gaussian noise, and
is the transmit signal carrying the common information. For the
classic multicast beamforming scheme, is generated as

(2)
where is the transmit power, is the beamforming
vector, and is the information symbol, which is usually
assumed to be Gaussian distributed [1]. Herein, deviating from
(2), we introduce a new rank-two beamforming scheme, called
beamformed (BF) Alamouti. Particularly, we consider the mul-
ticast system with finite-alphabet inputs.
The BF Alamouti scheme was first proposed in [3], [11],

which can be seen as a rank-two generalization of the transmit
beamforming scheme [1]. It consists of the following three main
steps: 1) Group the consecutive information symbols into mul-
tiple vectors for ;
2) map into a Alamouti code , i.e.,

3) multiply by an rank-two beamforming matrix
. As a result, the transmit signal for the th

transmission block is given by

Herein we consider the case where is drawn uniformly
from a given finite-alphabet set , e.g., for QPSK.
Then, at the receiver side, by treating as part of the channel and
applying the standard Alamouti detection, the MISO received
signal model

can be turned into the following equivalent SISO one

where we define for ,
, and . This

completes the description of the BF Alamouti scheme. Now, our
problem of interest is to design the beamforming matrix such
that the finite-alphabet-constrained multicast rate is maximized;
i.e.,

(3)

where is user- ’s achievable rate under finite-alphabet
inputs [5]:

Here, ,
, and .

In contrast to the case of Gaussian inputs, problem (3) appears
to be more challenging due to the complex form of the rate func-
tion . Nevertheless, the following lemma reveals some nice
properties of :
Lemma 1: ([5], [12]) The rate function is nonde-

creasing and concave w.r.t. .
The nondecreasing property follows directly from Theorem 1

in [12] and the concavity is due to Theorem 1 in [5]. In light of

1To obtain this result, we have used the fact that a log-sum-exp function can
be well approximated by a pointwise maximum function [13].

Lemma 1, we can express problem (3) as the following much
simpler SNR-based max-min-fair (MMF) problem:

Problem ( ) is identical to the multicasting problem under
Gaussian inputs [3], which is known to be NP-hard in general
[3], [11]. To generate an approximate solution to ( ) in an
efficient manner, a widely used technique is SDR. Specifically,
by letting and dropping the rank-two constraint
on , we get an SDR of :

Problem ( ) is a convex problem and can be effi-
ciently solved. Let be an optimal solution to (SDR). If

, then an optimal solution to problem (3) can be
obtained through eigendecomposition; otherwise a rank-two
Gaussian randomization in Algorithm 1 can be employed to
generate an approximate solution to (3). In the sequel, we
shall develop a sufficient condition under which ( ) has an
optimal rank-two solution and analyze the SDR approximation
accuracy of the Gaussian randomization procedure.

B. Approximation Accuracy Analysis for BF Alamouti
To facilitate the analysis of the SDR approximation accuracy,

let us denote by

(4)

the “multicast rate” associated with the optimal solution to
( ). Clearly, serves as an upper bound on the max-
imum multicast rate of BF Alamouti; i.e.,

holds for any feasible of (3), where denotes the
optimal value of (3). Let . The fol-
lowing proposition reveals a further relationship among ,

, and :
Proposition 1: Consider problems ( ) and ( ):
a) When , one can always find in polynomial time

an optimal of ( ) such that rank( . Thus,
holds and problem ( ), or equiv-

alently problem (3), can be optimally solved.
b) When , by using the rank-two Gaussian randomiza-

tion in Algorithm 1, one can generate from a feasible
solution to problem (3) that satisfies

with probability at least , where denotes the
number of Gaussian randomizations and

The proof of Proposition 1 is relegated to Appendix A. The
first part of Proposition 1 gives a sufficient condition under
which the SDR is tight, while the second part identifies a
worst-case multicast rate gap of the SDR-based approximation.
Roughly speaking, the rate gap scales up at a rate of as
the number of users increases.1 While this result is better
than that for transmit beamforming [1], [3], BF Alamouti may
still suffer from rate degradation when is large. In the next,
we will introduce another beamforming scheme—stochastic
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beamforming, which is able to achieve better multicast rate
performance than BF Alamouti, especially for large .

Algorithm 1 Gaussian Randomization Procedure for (3)

1: For to , generate two independent random vectors
, define and

;
2: Let and .

III. THE STOCHASTIC BEAMFORMING SCHEME

Stochastic beamforming (SBF) was originally introduced in
[3] for multicast beamforming under Gaussian inputs. The key
idea is to adopt a randomize-in-time beamforming strategy [3],
rather than keeping invariant over the whole transmission [cf.
(2)]. Specifically, the transmit signal of SBF takes the form

(5)

where the beamformer varies randomly in time according
to some prespecified distribution (to be specific shortly). At the
receiver side, by treating as part of the channel, SBF ren-
ders a virtual fast-fading SISO received signal model:

(6)

By letting the transmitter send the random seed for generating
and its covariance to the users as part of the preamble

of the transmitted data frame, SBF receivers can presume simple
coherent symbol reception and channel decoding. Hence, SBF
is just as efficient as those of fixed beamforming with channel
coding in terms of implementation. Consequently, the multi-
cast rate of SBF under finite-alphabet inputs can be deduced as
follows:

(7)

where denotes a generic random variable of with mean
zero and covariance matrix . Notice that
is implicitly assumed in order to satisfy the transmit power

constraint.
To maximize the SBF multicast rate , we need to

optimize the distribution of , which is a challenging task. In
this letter, as a compromise, we consider an easy-to-generate
distribution, namely the Gaussian distribution [3], which is able
to achieve a provably good multicast rate.2
For the Gaussian SBF, follows a complex Gaussian distri-

bution . In this case, it remains to optimize the covari-
ance matrix , viz.,

(8)

Problem (8) is a stochastic optimization problem. By evaluating
the expectation, it can be shown that
Claim 1: Problem (8) is equivalent to problem ( ).
The proof of Claim 1 is provided in Appendix B. Claim 1

implies that the optimal covariance for generating Gaussian SBF
beamformers is identical to the optimal to ( ).Moreover,
since is concave w.r.t. (cf. Lemma 1), by
Jensen’s inequality, it can be shown that the objective of (8) is

2There are also other choices of SBF distributions, e.g., elliptic and Bingham
SBFs; readers may refer to [3] for details.

upper bounded by [cf. (4)], i.e., .
Conversely, we have
Proposition 2: For Gaussian SBF, it holds that

(9)

where

The proof of Proposition 2 is relegated to Appendix C. Com-
pared to Proposition 1(b), the rate gap of Gaussian SBF in (9) is
insensitive to , which implies that Gaussian SBF may achieve
better rate performance than BF Alamouti, especially for large
number of users. This will be further confirmed by our numer-
ical results in Section IV.

IV. SIMULATION RESULTS AND CONCLUSIONS
In this section, we provide numerical results to compare the

performance of the three transmit schemes, namely the transmit
beamforming scheme, BF Alamouti scheme, and Gaussian SBF
scheme. The simulation settings are as follows: The base station
has antennas and serves users; QPSK and 16-ary QAM
modulation schemes are adopted; the number of Gaussian ran-
domization is . All the channels are randomly gen-
erated with each entry being i.i.d. .
Fig. 1 investigates the rate behaviors of various methods

when we set the number of users and increase the
number of users by fixing dB. For ease of presenta-
tion, we normalize each user’s achievable rate by , and
thus the maximum rate is 1 bps/Hz. This figure shows that as
expected, Gaussian SBF is less sensitive to , as compared
with transmit beamforming and BF Alamouti. Particularly,
it outperforms other schemes when . This suggests
that for large-scale system, it is more desirable to adopt the
SBF scheme. In addition, for we see that BF Alamouti
coincides with the SDR upper bound, which is consistent with
Proposition 1(a). In Fig. 2, we show the bit error rate (BER)
results for different transmit strategies. Specifically, we show a
relatively long code–a rate-1/3 turbo code with an information
length of 960 bits–for , , 16-ary QAM modulated
case and a relatively short code–rate-1/2 turbo code with an
information length of 286 bits–for , , 64-ary
QAM modulated case. Note that we adopt the channel coding
scheme in [14] with 10 decoding iterations. As a performance
lower bound, we plot the result of “SDR bound”, which runs
a virtual single-user SISO channel with SNR . From the
plots, we see that even with a short code (which means that is
not relatively large), both BF Alamouti and Gaussian SBF own
better BER performance than transmit beamforming, and they
are within 1 away from the SISO lower bound.
To conclude, we have considered the multicast rate optimiza-

tion for MISO downlink with finite-alphabet inputs. Two new
beamforming schemes, namely beamformed (BF) Alamouti and
Gaussian stochastic beamforming (SBF), were investigated.
We have shown that for both schemes, the multicast rate opti-
mization problem under finite-alphabet inputs can be recast as
that under Gaussian inputs. From there, we have also analyzed
the rate performances of the two schemes. Simulation results
demonstrate that BF Alamouti and Gaussian SBF can achieve
better rate performance than traditional transmit beamforming,
and Gaussian SBF is superior to other schemes when there are
many users in the system.
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Fig. 1. Normalized multicast rate scaling with the number of users.

Fig. 2. Worst-user’s BER performance for various schemes.

APPENDIX A
PROOF OF PROPOSITION 1

The proof relies on the existing SDR approximation results
for problem [1], [3]. Specifically, the first part of Propo-
sition 1 follows directly from Proposition 5 in [3]. To prove the
second result, notice that for any , we have

(10)

where
and

.
The first inequality in (10) follows from The-
orem 1 in [6] and the second inequality is due to
Jensen’s inequality

. It also follows from

Theorem 4 in [3] that the Gaussian randomization procedure in
Algorithm 1 yields a beamforming matrix such that

(11)

holds with probability at least . Combining (10) and
(11) yields

where the last inequality is due to (11). This, together with the
nonnegativity of , produces the desired result.

APPENDIX B
PROOF OF CLAIM 1

By using the property of Gaussian SBF [3, Theorem 1], we
have

where , , , and follows
an exponential distribution with unit mean. Note that for a given
, is nondecreasing w.r.t. (recall Lemma 1). Then,
it is easy to see that is nondecreasing w.r.t. , and
thus is nondecreasing w.r.t.

. In other words, maximizing amounts
to maximizing , which completes the proof.

APPENDIX C
PROOF OF PROPOSITION 2

Define and . Since
, it can be shown that follows an exponential

distribution with unit mean. Hence, we have (12), shown at the
bottom of the page, where , is defined
in (10), and the second inequality is due to Jensen’s inequality.
Also, we have

which together with (12) and the nonnegativity of
yields the desired result in (9).

(12)
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