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Abstract—Differential spatial modulation (DSM) is a newly-
emerging differential scheme tailored to the spatial modulation
technique, which selects only one among a group of antennas for
transmission at any time instant. DSM, however, gives rise to pro-
hibitive search complexity when the number of transmit antennas
is large. In this letter, a low-complexity suboptimal detector is pro-
posed for DSM. It is designed based on the maximum-likelihood
criterion but takes more candidates for the antenna activation
orders into account. The detection is performed in two steps: the
first step is to confine the number of candidates for the modulated
symbols to a small portion by exploiting the symmetry of the
signal constellation; the second step is to select the most likely
modulated symbols from the output of the first step according to
the determined antenna activation order via a Viterbi-like algo-
rithm. Analyses and simulations show that the proposed detector
achieves near-optimal performance yet largely reduces the search
complexity.

Index Terms—Differential modulation, search complexity, spa-
tial modulation (SM).

I. INTRODUCTION

S PATIAL MODULATION (SM) activates a single transmit
antenna for transmission at any particular time instant

[1]–[4]. However, this feature significantly challenges the ac-
quisition of channel state information (CSI), which is necessary
for coherent SM decoding [2]. To overcome this challenge,
recently, we proposed a differential (D-)SM scheme, which
dispenses with the CSI acquisition [5]–[7]. It is shown that
DSM not only preserves most advantages of SM but also has
the potential to pay less than 3 dB signal-to-noise ratio (SNR)
penalty with respect to SM for a target bit error rate (BER). In
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contrast to SM, which uses the index of the active antenna to
implicitly convey information, DSM relies on a unique antenna
activation order in which each antenna is activated once and
only once during time instants, with denoting the
number of transmit antennas. Consequently, unlike SM, which
has to search through transmit antennas to identify the
most probable active one from the received signal, DSM has to
identify the most probable order out of nearly antenna
activation orders from the received signals within time
instants. This implies that the development of a low-complexity
detector for DSM is as crucial as that for SM [8].
In this letter, we propose a low-complexity suboptimal DSM

detector, which is designed based on the maximum-likelihood
(ML) criterion but takes more candidates for the antenna ac-
tivation orders into account. The proposed detection is com-
prised of two steps. For the first step, the symmetric property of
the phase-shift keying (PSK) constellation is taken advantage
of and only about one-eighth of all constellation points are in-
volved in the calculation. The output of the first-step detection is

modulated symbol candidates that are to be fed to the input
of the second-step detection. For the second step, the space of
the search through all possible permutations of the indices of
transmit antennas is reduced to a very small portion. This is
carried out in a manner similar to the Viterbi decoder [9] by
resorting to the property that each permutation, similar to con-
volutional coding, has memory. The output of the second-step
detection gives the final estimated antenna activation order and
modulated symbols. The search complexity of the proposed de-
tector is shown to be much lower than that of the optimal DSM
detector, andMonte-Carlo simulations are conducted to validate
its near-optimal performance. The rest of the letter is organized
as follows. Section II reviews the ML-based optimal DSM de-
tector. The implementation, the search complexity, and the per-
formance of the proposed detector are discussed in Section III.
Notation: Upper and lower case boldface letters denote ma-

trices and column vectors, respectively. The ( )-th entry of a
matrix is denoted by . The -th entry of a vector is
denoted by . The -th element of a set is denoted by ,
e.g., if , then and .
and denote the Hermitian operation and the absolute value,
respectively. and represent the real and the imagi-
nary components of their arguments, respectively. and

return the polarity of and the largest integer less than or equal
to the argument, respectively. returns a new set which is
formed by appending to , e.g., if and ,

. returns a new set which is formed by
removing from , e.g., if and ,

. denotes the trace operation. denotes the
identity matrix. .
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II. OPTIMAL DSM DETECTOR

In DSM, the communication is carried out block-wise, where
each transmitted block occupies time slots. In each trans-
mitted block, the incoming bits are partitioned into two parts:
the first part is comprised of bits and determines the
activation order of all transmit antennas, while the second part
is comprised of bits and generates the modulated
symbols, , with being drawn from the -PSK con-
stellation of normalized power, . Consider the -th transmitted
block. The time slots from to are taken to
transmit the matrix , which is generated according
to

(1)

with , where is defined as the
information matrix. Here, only the -th entry of

is nonzero and is given by , where
and indicate the ac-

tivation order of all transmit antennas corresponding to the
integer parameter , which has
a one-to-one mapping relationship with the first part of the
incoming bits [7]. Note that we have omitted the notation in
both and for notational simplicity, and will do so
hereafter. An example for a one-to-one mapping with
is given by

From the above explanation, it is clear that the data rate of the
DSM system is bps Hz .
Let , , and , all of dimension , rep-

resent the received signal matrix, the channel matrix with zero
mean and covariance , and the complex Gaussian noise ma-
trix with zero mean and covariance , corresponding to
the -th transmitted block, respectively, where denotes the
number of receive antennas and represents the receive SNR.
The received signal in the matrix representation is given by

(2)

Assuming quasi-static fading, in which case ,
Eq. (2) can be rewritten from Eq. (1) as

(3)

and thus the optimal ML detector can be derived as [7]

(4)

In light of Eq. (4), it is clear that the optimal DSM detector
necessitates an exhaustive search through all joint candidates

and , which leads to a search complexity of
. Here, we do not take into account the

computational cost of the involved matrix multiplication but
only the comparisons among all candidates.

III. PROPOSED DETECTOR

In this section, we present a low-complexity near-ML de-
tector for DSM. To begin with, let ,
which is of dimension . Due to the independence
among the modulated symbols transmitted in different time
slots, Eq. (4) can be simplified as

(5)

and

(6)

where is of dimension . Since given
, there always exists at least an with that

satisfies for some and large ,
one will discover from Eq. (5) that
in those cases. To avoid duplicate computation, we can further
simplify Eqs. (5) and (6) as

(7)

and

(8)

where both and are of dimension and
with . The

proposed detector is based on Eqs. (7) and (8), which is
carried out in the following two steps. The first step is to
solve Eq. (7), and the second step is to solve Eq. (8) but with

relaxed to so as to
facilitate low-complexity detection, which will be discussed
later. Note that the above-mentioned relaxation only applies
to cases, which are of particular interest as we focus
on the reduction of the computational complexity for a large

. With such relaxation, however, the detector may decide
on that is not included in , thus resulting in performance
loss. Nevertheless, we will see from the simulation results that
this performance loss is negligible. In the sequel, details on
how each step works will be presented, and we will omit the
notation for brevity.

A. First Step: Signal Domain Pre-detection
The first step aims at low-complexity calculation of the ma-

trix defined in Eq. (7). This step invokes an initial detection
of modulated symbols and thus is termed signal domain pre-de-
tection in this letter. The idea is clarified in the following.
Let us reformulate Eq. (7) as

(9)
Eq. (9) indicates that is a modulated symbol drawn from
, for which the maximum of the expression is achieved. From

Eq. (9), it can be deduced that must have the same
polarity as and must have the opposite
polarity to . Therefore, we can solve Eq. (9) by first
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searching for the constellation point, , belonging to the first
quadrant, which satisfies

(10)
based on the symmetry of the PSK constellation and then
mapping to based on the above-mentioned polarity
property in analogy with [8]. However, we find that a further
reduction of search complexity, which accounts for a half
fewer constellation points than [8], is possible, thanks to the
symmetry of the real and imaginary parts of the constellation
points belonging to the first quadrant. To show this, define

if , otherwise,
. Further, let and

. By definition, the solutions of
and are now translated into the solutions of
and , respectively. Since given and

it follows that , from
Eq. (10) the search for can be completed by

(11)

Then, according to
, the relationship between

and can be readily established as

(12)
Note that Eq. (12) is not unique. For example, one could
have used in place of

.
Example: Assume 16-PSK modulation for the -th time slot,

i.e., and .
Suppose that . Thus, we have
, , and .
Searching through about one-eighth of the constellation points
according to Eq. (11) gives and accordingly

. Then, from Eq. (12) we have and ac-
cordingly , which agrees with that solved
by Eq. (9) via searching through the whole constellation.
When is ready, it is straightforward to obtain the metric

matrix from Eq. (10).

B. Second Step: Joint Detection
As discussed earlier, the second step is to search for an optimal

order of indices of transmit antennas, parametrized by , via

(13)

and to search for the most-likely transmitted symbols through
the candidates included in . This step invokes both signal do-
main and spatial domain detections and thus is termed joint de-
tection in this letter. As the signal domain detection is simply

TABLE I
DEFINITION OF PARAMETERS IN ALGORITHM 1

with , we will mainly
focus on the spatial domain detection in the following.
As indicated in Eq. (13), to perform the spatial domain detec-

tion, we have to first initialize the
matrix , which becomes impractical for a larger . Noticing
that the metric accumulation in Eq. (13) is dictated by the se-
quence , which has memory, we are motivated
by the Viterbi algorithm [9] to reduce the search complexity.
The idea can be clarified through the following example. As-
sume that and there exist two candidates and ,
giving and

. Then, fromEq. (13), it can be inferred that is pre-
ferred over when

, and vice versa. In
fact, the above decision can be made merely via comparing
the following two accumulated metrics
and . Moreover, to extend, provided that

is larger (smaller) than ,
the antenna activation orders with the first two indices being

( ) can be all removed from the search space.
To realize this idea, we find it useful to predefine some pa-

rameters, as listed in Table I, and introduce the following enu-
meration method. The adopted enumeration method is based on
the combinational number system (CNS) [10], which enables
us to map a natural number to a unique
permutation with and

, via
(14)

The enumeration procedure starts by choosing the maximal
that satisfies , and proceeds by choosing
the maximal that satisfies

and so on until Eq. (14) is satisfied.
As an example, for , , and , the per-
mutation can be calculated as . With
the above-mentioned preliminaries, we summarize the en-
tire process of the proposed spatial domain detection in
Algorithm 1. In the algorithm, the initialization corresponds
to the 1-st time slot case, where guarantees
that 1. For the -th
time slot case, in total permu-
tations of out of transmit antenna indices are to be
grouped into classes. In each class, permutations

1This implies that all antenna activation orders starting with index are
excluded in the search [7]. Note that it is also feasible to enable in
order to achieve the optimal performance, which, however, will significantly
complicate the search as we have to judge the legality of each possible
antenna activation order up to the current time slot.
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Fig. 1. Illustration of the example, where the solid line represents the survivor
path whereas the dotted line represents the discarded path.

TABLE II
PARAMETERS EVOLUTION IN THE EXAMPLE

of the same indices will compete with each other and only
the one with the largest accumulated metric will be saved and
fed to the -th time slot. The process continues until

, i.e., all transmit antennas have been considered in
the comparison.

Algorithm 1 Viterbi decoding based spatial domain detector

1: Initialization:

2: for : % loop 1 starts
3: % zeros
4: for : % loop 2 starts
5:
6: for : % loop 3 starts
7: Sort in descending order
and get its address via (14) as
8: if
9:
10:
11: end if
12: end for % loop 3 ends
13: end for % loop 2 ends
14: ,
15: end for % loop 1 ends
16: Transfer to the corresponding parameter

Example: Suppose that and .
. According to Algorithm 1, the evo-

lution of some important parameters for different time slots (be-
fore line 14) is presented in Table II. A graphical illustration is
also provided in Fig. 1.

Fig. 2. Performance comparison between theML detector and the proposed de-
tector under the assumption of 8-PSK modulation, slow Rayleigh fading chan-
nels, , and .

C. Complexity Analysis

From Section III-A, it is clear that the task of signal do-
main pre-detection is mainly focused on the calculation of the

matrix , whose -th row contains -PSK
symbols, where . Since each -PSK symbol is
obtained via searching through about one-eighth of the constel-
lation points from Eq. (11), the overall search complexity of
the signal domain pre-detection is of order .
On the other hand, from Section III-B one can see that the
task of joint detection is mainly focused on the spatial domain
detection, which is detailed in Algorithm 1. The search starts
from the ( )-th time slot and ends at the -th time
slot. At the ( )-th time slot, antenna activation
orders will be saved, each of which is chosen by comparing

ones. This means that a search
through antenna activation orders
is involved at the -th time slot. Therefore, the overall
search complexity of the spatial domain detection can be ob-
tained as
by virtue of [11, Eq. (0.154.1)]. Consequently, the overall
search complexity of the proposed detector is about

.

D. Simulation Results

We perform simulations to examine the BER performance
of the proposed detector. In the simulations, 8-PSK modulation
and slow Rayleigh fading are assumed; the number of transmit
antennas is chosen as and 8, indicating that the data
rates of the system are 4 bps/Hz and 4.875 bps/Hz, respectively;
the number of the receive antennas is chosen as ,
and 4, respectively. From the complexity analysis, one can see
that for and 8, the search complexities of the proposed
detector amount to 48 and 1088, whereas those of the optimal
detector are 65536 and , respectively. The simu-
lation results are illustrated in Fig. 2. Obviously, the proposed
detector achieves nearly the same BER performance as the op-
timal detector.
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