
IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 11, NOVEMBER 2015 1931

Distributed Autoregressive Moving
Average Graph Filters

Andreas Loukas, Andrea Simonetto, and Geert Leus

Abstract—We introduce the concept of autoregressive moving
average (ARMA) filters on a graph and show how they can be im-
plemented in a distributed fashion. Our graph filter design phi-
losophy is independent of the particular graph, meaning that the
filter coefficients are derived irrespective of the graph. In contrast
to finite-impulse response (FIR) graph filters, ARMA graph filters
are robust against changes in the signal and/or graph. In addition,
when time-varying signals are considered, we prove that the pro-
posed graph filters behave as ARMA filters in the graph domain
and, depending on the implementation, as first or higher order
ARMA filters in the time domain.
Index Terms—Distributed time-varying computations, graph fil-

ters, graph Fourier transform, signal processing on graphs.

I. INTRODUCTION

T HE emerging field of signal processing on graphs [1]–[4]
focuses on the extension of classical discrete signal pro-

cessing techniques to the graph setting. Arguably, the greatest
breakthrough of the field has been the extension of the Fourier
transform from time signals and images to graph signals, i.e.,
signals defined on the nodes of irregular graphs. By providing a
graph-specific definition of frequency, the graph Fourier trans-
form (GFT) enables us to design filters for graphs: analogously
to classical filters, graph filters process a graph signal by ampli-
fying or attenuating its components at specific graph frequen-
cies. Graph filters have been used for a number of signal pro-
cessing tasks, such as denoising [5], [6], centrality computation
[7], graph partitioning [8], event-boundary detection [9], and
graph scale-space analysis [10].
Distributed implementations of filters on graphs emerged as a

way of increasing the scalability of computation [3], [11], [12].
Nevertheless, being inspired by finite impulse response (FIR)
graph filters, these methods are sensitive to time variations (e.g.,
time-varying signals and/or graphs). An alternative approach,
namely distributed infinite impulse response (IIR) graph filters,
was recently proposed by Shi et al. [13]. Compared to FIR graph
filters, IIR filters have the potential to achieve better interpo-
lation or extrapolation properties around the known graph fre-
quencies. Yet the issue of time variations has so far been unre-
solved.

Manuscript received March 10, 2015; revised June 19, 2015; accepted June
19, 2015. Date of publication June 23, 2015; date of current version June 25,
2015. The associate editor coordinating the review of this manuscript and ap-
proving it for publication was Prof. Guy Gilboa.
The authors are with the Faculty of EEMCS, Delft University of Technology,

2826 CD Delft, The Netherlands (e-mail: a.loukas@tudelft.nl; a.simon-
etto@tudelft.nl; g.j.t.leus@tudelft.nl).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/LSP.2015.2448655

In a different context, we introduced graph-independent IIR
filter design, or what we will label here as universal IIR filter de-
sign (in fact, prior to [13]) using an autoregressive process called
the potential kernel [9], [14]. In this letter, we will build upon
our prior work to develop more general autoregressive moving
average (ARMA) graph filters of any order, using parallel or
periodic concatenations of the potential kernel. Though ARMA
graph filters belong to the class of IIR graph filters, they have
a distinct design philosophy which bestows them the ability to
filter graph signals not only in the graph-frequency domain, but
also in the regular temporal frequency domain (in case the signal
is time-varying). Specifically, our design extends naturally to
time-varying signals leading to 2-dimensional ARMA filters: an
ARMA filter in the graph domain of arbitrary order and a first
order AR (for the periodic implementation) or a higher order
ARMA (for the parallel implementation) filter in the time do-
main, which opens the way to a deeper understanding of graph
signal processing, in general. We conclude the letter by dis-
playing preliminary results suggesting that our ARMA filters
not only work for continuously time-varying signals, but also
degrade gracefully with continuously time-varying graphs (e.g.,
due to mobility).

II. GRAPH FILTERS
Consider a graph of nodes and let be a signal

defined on the graph, whose -th component represents the
value of the signal at the -th node, denoted as .
Graph Fourier Transform (GFT). The GFT transforms a

graph signal into the graph frequency domain: the forward and
inverse GFTs of are and , where

denotes the inner product. Vectors form an or-
thonormal basis and are commonly chosen as the eigenvectors
of a graph Laplacian , such as the discrete Laplacian or
Chung’s normalized Laplacian . For an extensive review of
the properties of the GFT, we refer to [2], [4].
To avoid any restrictions on the generality of our approach,

in the following we present our results for a general basis matrix
. We only require that is symmetric and 1-local: for all ,

whenever and are not neighbors and
otherwise.
Graph filters. A graph filter is a linear operator that acts

upon a graph signal by amplifying or attenuating its graph
Fourier coefficients as

(1)

Let and be the minimum and maximum eigenvalues
of over all possible graphs. The graph frequency response

1070-9908 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This paper previously published in IEEE Signal Processing Letters



1932 IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 11, NOVEMBER 2015

controls how much amplifies the
signal component of each graph frequency

(2)

Distributed graph filters. We are interested in how we can
filter a signal with a graph filter in a distributed way, having
a user-provided frequency response . Note that this pre-
scribed is a continuous function in the graph frequency
and describes the desired response for any graph. The cor-

responding filter coefficients are thus independent of the graph
and universally applicable.

filters. It is well known that we can approximate in
a distributed way by using a -th order polynomial of . Define

as the -th order approximation given by

where the coefficients are found by minimizing the least-
squares objective . Observe that,
in contrast to traditional graph filters, the order of the consid-
ered universal graph filters is not necessarily limited to . By
increasing , we can approximate any filter with square inte-
grable frequency response arbitrarily well.
The computation of is easily performed distributedly.

Since , each node can compute the
th-term from the values of the th-term in its neighbor-

hood. The algorithm terminates after iterations, and, in total,
each node exchanges bits and stores
bits in its memory. However, filters exhibit poor per-
formance when the signal or/and graph are time-varying and
when there exists asynchronicity among the nodes1. In order to
overcome these issues and provide a more solid foundation for
graph signal processing, we study ARMA graph filters.

III. ARMA GRAPH FILTERS
To present universal ARMA graph filters, we first assume that

that the graph signal stays constant over time. We extend our
analysis to time-varying signals in Section IV.

A. Distributed Computation
We start by presenting a simple recursion that converges to

a filter with a 1st order rational frequency response. We then
propose two generalizations with -th order responses2. Using
the first, which entails running 1st order filters in parallel,
a node attains fast convergence at the price of exchanging
and storing bits per iteration3. By using periodic
coefficients, the second algorithm reduces the number of bits
exchanged and stored to , at almost equivalent (or
even faster) convergence time.

1This because, first the distributed averaging is paused after iterations, and
thus the filter output is not a steady state; second the input signal is only con-
sidered during the first iteration. To track time-varying signals, the computation
should be restarted at each time step, increasing the communication and space
complexities to bits and bits.

2Note that similar structures were independently developed in [13], although
based on a different design methodology.

3Any values stored are overwritten during the next iteration.

filters.We will obtain our first ARMA graph filter
as an extension of the potential kernel [14]. Consider the fol-
lowing 1st order recursion:

(3)

where if the filter output at iteration , the coefficients are
(for now) arbitrary complex numbers, and is the translation
of with the minimal spectral radius:
. From Sylvester’s matrix theorem, matrices and have

the same eigenvectors and the eigenvalues of differ by a
translation to those of : .
Proposition 1: The frequency response of is

, with the residue and the pole
given by and , respectively. Recursion

(3) converges to it linearly, irrespective of the initial condition
and matrix .
Proof: The proof follows from Theorem 1 in [14], in which

we replace with and with .
Recursion (3) leads to a very efficient distributed implemen-

tation: at each iteration , each node updates its value
based on its local signal and a weighted combination of the
values of its neighbors . Since each node must ex-
change its value with each of its neighbors, the message/space
complexity at each iteration is bits.
Parallel filters.We can attain a larger variety of

responses by simply adding the output of multiple 1st order fil-
ters. Denote with the superscript the terms that correspond to
the -th filter ( ).
Corollary 1: The frequency response of a parallel

is

with and , respectively. Re-
cursion (3) converges to it linearly, irrespective of the initial
condition and matrix .

Proof: (Sketch) From Proposition 1, at steady state, we
have

and switching the sum operators the claim follows.
The frequency response of a parallel is therefore a

rational function with numerator and denominator polynomials
of orders and , respectively4. At each iteration, node

exchanges and stores bits.
Periodic filters. We can decrease the memory

requirements of the parallel implementation by letting the
filter coefficients vary in time. Consider the output of the
time-varying recursion

(4)

4By choosing the coefficients properly, we can generalize the rational function
to have any degree smaller than in the denominator. By adding an extra input,
we can also obtain order in the numerator.

This paper previously published in IEEE Signal Processing Letters



LOUKAS et al.: DISTRIBUTED AUTOREGRESSIVE MOVING AVERAGE GRAPH FILTERS 1933

every iterations, where coefficients are periodic
with period : , with
an integer in .
Proposition 2: The frequency response of a periodic

filter is

s.t. the stability constraint .
Recursion (4) converges to it linearly, irrespective of the initial
condition and matrix .

Proof: Define matrices and
if and otherwise. The

output at the end of each period can be re-written as a time-
invariant system

(5)

with , . As-
suming that is non-singular, both and have the same
eigenvectors as (and ). As such, when ,
the steady state of (5) is

To derive the exact response, notice that

which, by the definition of and , yields the desired frequency
response. The linear convergence rate follows from the linear
convergence of (5) to with rate .
By some algebraic manipulation, we can see that the fre-

quency responses of periodic and parallel filters are
equivalent at steady state. In the periodic version, each node

stores bits, as compared to bits in
the parallel one. The low-memory requirements of the periodic

render it suitable for resource constrained devices.

B. Filter Design
Given a graph frequency response

and a filter order , our objective is to find the complex poly-
nomials and of order and , respectively,
that minimize

while ensuring that the chosen coefficients result in a stable
system (see constraints in Corollary 1 and Proposition 2).
Remark 1: Whereas is a function of , the desired fre-

quency response is often a function
of . We attain by simply mapping the user-provided re-
sponse to the domain of : .
Remark 2: Even if we constrain ourselves to pass-band

filters and we consider only the set of for which
, it is impossible to design our coef-

Fig. 1. The frequency response of filters designed by Shank’s
method and the FIR responses of corresponding order. Here, is a step
function (top) and a window function (bottom).

Fig. 2. Convergence comparison of ARMA filters w.r.t. the IIR filters of [13].
The filtering error is , where is the desired output.

ficients based on classical design methods developed for IIR
filters (e.g., Butterworth, Chebyshev). The stability constraint
of is different from classical filter design, where the
poles of the transfer function must lie within (not outside) the
unit circle.
Design method. Similar to Shank’s method [15], we approx-

imate the filter coefficients in two steps:
1) We determine , by finding a order poly-

nomial approximation of using
polynomial regression, and solving the coefficient-wise
system of equations .

2) We determine by solving the constrained
least-squares problem of minimizing

, w.r.t. and s.t. the stability constraints.
Fig. 1 illustrates in solid lines the frequency responses of three

filters ( ), designed to approximate a
step function (top) and a window function (bottom). In the first
step of our design, we computed the FIR filter as a Cheby-
shev approximation of of order . ARMA re-
sponses closely approximate the optimal FIR responses for the
corresponding orders (dashed lines). Fig. 2 compares the con-
vergence of our recursions w.r.t. the IIR design of [13] in the
same low-pass setting of Fig. 1 (top), running in a network of

nodes5. We see how our periodic implementation (only
plotted at the end of each period when it is valid) obtains faster
convergence. The error of filters increases significantly at the
beginning for , due to the filter coefficients, which are
very large.

5We do not consider the cascade form of [13] since every module in the cas-
cade requires many iterations, leading to a slower implementation.

This paper previously published in IEEE Signal Processing Letters



1934 IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 11, NOVEMBER 2015

IV. TIME VARIATIONS

We now focus on filters and study their behavior
when the signal is changing in time, thereby showing how our
design extends naturally to the analysis of time-varying signals.
We start by filters: indicate with the graph signal at
iteration . We re-write recursion as

(6)

The graph signal can still be decomposed into its graph
Fourier coefficients, only now they will be time-varying, i.e.,
we will have . Under the stability condition ,
for each of these coefficients we can write its respective graph
frequency and temporal frequency transfer function as

(7)

where stems from the -transform. The transfer functions
characterize completely the behavior of

graph filters when the graph does not change (e.g., there is no
mobility): when , we obtain back the constant result
of Proposition 1, while for all the other we obtain the regular
temporal frequency response as well as the graph frequency
one. As one can see, 1st order filters are universal in
the graph domain (they do not depend on the particular choice
of ), as well as 1st order AR filters in the time domain. This
result generalizes to parallel and periodic filters.
Parallel . Similarly to Corollary 1, we have:
Proposition 3: Under the same stability conditions of Corol-

lary 1, the transfer function from the input to the
output of a parallel implementation is

Proof: The recursion (3) for the parallel implementation
reads

(8)

while the output is . This can be written in a
compact form as

(9)

where is the stacked version of all the , while

and . Under the same stability conditions of Corol-
lary 1, the transfer matrix between and is

where we have used the block diagonal structure of . By ap-
plying the Graph Fourier transform, the claim follows.

Fig. 3. The effect of node mobility inducing a time-varying signal and graph.
Each error bar depicts the standard deviation of the filtering error over ten runs.
The response error is . A small horizontal offset
was included to improve visibility.

Proposition 3 characterizes the parallel implementation com-
pletely: our filters are universal in the graph domain,
as well as in the time domain.
Periodic . For tractability, time-varying signals in

the periodic implementation will be analyzed assuming that we
keep the input fixed during the whole period (though this
needs not always hold in practice).
Proposition 4: Let be a sampled version of the input

signal , sampled at the beginning of each period. Under the
same stability conditions of Proposition 2, the transfer function
for periodic filters from to is

(10)

Proof: (Sketch) One writes the recursion (5) substituting
with , and proceeds as in the proof of Proposition 2.
As in the parallel case, this proposition describes completely

the behavior of the periodic implementation. In particular, our
filters are filters in the graph domain whereas 1st
order AR filters in the time domain. The design of to
accommodate both requirements and bandwidth for
time-varying signals is left for future research.
Time-varying graphs. We conclude with a preliminary re-

sult showcasing that the precision of ARMA graph filters de-
grades gracefully when signal and graph are both continuously
varying. Under the same setting of Fig. 1, we consider to
be the node degree, while moving the nodes by a random way-
point model [16] for a duration of 600 seconds. In this way, by
defining the graph as a disk graph, the graph and the signal are
continuously changing. The node degree is widely used in the
literature on graph filters for tasks such as robotic coordination
and crowd density estimation [14], [17]. In Fig. 3, we depict the
response error after 100 iterations (i.e., well after convergence)
in different mobility settings: the speed is defined in meters per
iteration and the nodes live in a box of meters
with a communication range of 180 meters. As our preliminary
results indicate, our designs can tolerate better time-variations.
Future research will focus on characterizing and exploiting this
property from the design perspective.

This paper previously published in IEEE Signal Processing Letters



LOUKAS et al.: DISTRIBUTED AUTOREGRESSIVE MOVING AVERAGE GRAPH FILTERS 1935

REFERENCES
[1] A. Sandryhaila and J. M. Moura, “Discrete signal processing on

graphs: Frequency analysis,” Trans. Signal Process., vol. 62, no. 12,
pp. 3042–3054, 2014.

[2] A. Sandryhaila and J. M. Moura, “Discrete signal processing on
graphs,” Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656, 2013.

[3] A. Sandryhaila, S. Kar, and J. M. Moura, “Finite-time distributed con-
sensus through graph filters,” in Int. Conf. Acoustics, Speech and Signal
Processing (ICASSP), 2014, pp. 1080–1084, IEEE.

[4] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other irreg-
ular domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98,
2013.

[5] F. Zhang and E. R. Hancock, “Graph spectral image smoothing using
the heat kernel,” Patt. Recognit., vol. 41, no. 11, pp. 3328–3342, 2008.

[6] S. Chen, A. Sandryhaila, J. M. Moura, and J. Kovacevic, “Signal de-
noising on graphs via graph filtering,” in Global Conf. Signal and In-
formation Processing (GlobalSIP), 2015, IEEE.

[7] L. Page, S. Brin, R. Motwani, and T. Winograd, The pagerank citation
ranking: Bringing order to the web Stanford Univ., Stanford, CA, USA,
Tech. Rep., 1999.

[8] F. Chung, “The heat kernel as the pagerank of a graph,” Proc. Nat.
Acad. Sci., vol. 104, no. 50, pp. 19 735–19 740, 2007.

[9] A. Loukas,M. A. Zúñiga, I. Protonotarios, and J. Gao, “How to identify
global trends from local decisions? event regiondetectiononmobilenet-
works,” in Int. Conf. Computer Communications (INFOCOM), 2014.

[10] A. Loukas, M. Cattani, M. A. Zúñiga, and J. Gao, “Graph scale-space
theory for distributed peak and pit identification,” in Int. Conf.
Information Processing in Sensor Networks (IPSN), 2015, ACM/IEEE.

[11] D. I. Shuman, P. Vandergheynst, and P. Frossard, “Chebyshev poly-
nomial approximation for distributed signal processing,” in Int. Conf.
Distributed Computing in Sensor Systems and Workshops (DCOSS),
2011, pp. 1–8, IEEE.

[12] S. Safavi and U. Khan, “Revisiting finite-time distributed algorithms
via successive nulling of eigenvalues,” IEEE Signal Process. Lett., vol.
22, no. 1, pp. 54–57, Jan. 2015.

[13] X. Shi, H. Feng, M. Zhai, T. Yang, and B. Hu, “Infinite impulse re-
sponse graph filters in wireless sensor networks,” IEEE Signal Process.
Lett., vol. 22, no. 8, pp. 1113–1117, 2015.

[14] A. Loukas, M. A. Zúñiga, M. Woehrle, M. Cattani, and K. Langen-
doen, “Think globally, act locally: On the reshaping of information
landscapes,” in Int. Conf. Information Processing in Sensor Networks
(IPSN), 2013, ACM/IEEE.

[15] J. L. Shanks, “Recursion filters for digital processing,”Geophysics, vol.
32, no. 1, pp. 33–51, 1967.

[16] N. Aschenbruck, R. Ernst, E. Gerhards-Padilla, and M. Schwamborn,
“Bonnmotion: A mobility scenario generation and analysis tool,” in
Int. ICST Conf. Simulation Tools and Techniques (SIMUTools), 2010,
ICST.

[17] A. Loukas, M. Woehrle, P. Glatz, and K. G. Langendoen, “On dis-
tributed computation of information potentials,” in ACM Int. Workshop
on Foundations of Mobile Computing (FOMC), 2012.

This paper previously published in IEEE Signal Processing Letters


