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Probabilistic Class Histogram Equalization
Based on Posterior Mean Estimation for
Robust Speech Recognition

Youngjoo Suh, Member, IEEE, and Hoirin Kim, Member, IEEE

Abstract—TIn this letter, we propose a new probabilistic class his-
togram equalization technique for noise robust speech recognition.
To cope with the sparse data problem which is common in the case
of short test data, the proposed histogram equalization technique
employs the posterior mean estimator, a kind of the Bayesian es-
timator, for test CDF. Experiments on the Aurora-4 framework
showed that the proposed method produces performance improve-
ment over the conventional maximum likelihood estimation-based
approach.

Index Terms—CDF estimation, feature normalization, his-
togram equalization, posterior mean, robust speech recognition.

I. INTRODUCTION

OBUST speech recognition aims at providing speech

recognition systems with robustness against the acoustic
mismatch caused by additive noise and channel distortion,
etc. It has been a long-standing and on-going research issue in
the areas of automatic speech recognition (ASR). An easiest
approach to robust speech recognition is feature normalization
which normalizes the statistical moments of speech features
which are corrupted by background noise and channel dis-
tortion [1]. Acoustic conditions corrupted by additive noise
and channel distortion cause a nonlinear transform in loga-
rithm-based feature spaces such as cepstrum and log filter-bank
energy [2]. For this reason, the conventional linear trans-
form-based feature normalization approaches such as cepstral
mean normalization (CMN) [3] or cepstral mean and variance
normalization (CMVN) [4] have fundamental limitations,
even though they provides noticeable performance gains in
noisy conditions. The histogram equalization (HEQ) tech-
nique [5]-[13] is an efficient nonlinear transformation-based
feature normalization or model adaptation approach due to
its algorithmic simplicity. In addition, it does not require any
prior assumptions about noise process or the way the noise
affects the speech model [6]. The basic idea of HEQ is to
normalize the probability density functions (PDFs) between
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the training and test data. This normalization can be achieved
by converting PDF of the test features into that of the training.
By this approach, HEQ can compensate for the acoustic mis-
match between training and test data. However, HEQ has some
fundamental limitations when employed to the real-world ASR
applications. To remedy these limitations, the probabilistic
class HEQ (CHEQ) approach has been proposed [7], which
equalizes different acoustic classes separately according to
their corresponding class-specific distribution. Another issue
in HEQ is to reliably estimate cumulative distribution function
(CDF). In ASR, training CDF can be accurately approximated
by its cumulative histogram. However, such approximations
tend to be unreliable for short test utterances which are common
in real-world environments. When the amount of data is in-
sufficient, the order statistics based method can produce more
accurate and reliable CDF [5]. A quantile-based HEQ was
also proposed to provide robust estimation of test CDF by
adjusting test CDF to training CDF with a set of quantiles [12].
Even though these methods can estimate test CDF more accu-
rately, the resulting test CDF still suffers from poor estimation
accuracy due to overfitting when the data are sparse. This
overfitting problem gets worse in the case of CHEQ, where
the amount of test data per class becomes smaller according
to the number of total classes. The overfitting problem in the
estimation of test CDF can be alleviated by using the Bayesian
priors such as maximum a posteriori (MAP) or posterior mean
(PM) estimation approaches [14]. Of the two methods, the PM
approach can provide a more straightforward solution in coping
with the sparse data problem in the case of histogram-based
estimation where the Dirichlet-multinomial conjugate can be a
mathematically tractable approach to modeling the histogram
parameters.

In this paper, we propose probabilistic class HEQ employing
the PM based test CDF estimation technique for feature normal-
ization in ASR.

II. HISTOGRAM EQUALIZATION

A. HEQ

For training and test feature components x and y, respec-
tively, both of which are assumed to be random variables, let
px(x) and py (y) denote their corresponding PDFs. Histogram
equalization aims to normalize test feature data by transforming
PDF of test feature y into that of training feature « and is given
in [5] as

&= F(y) = Cx'[Cy(y)] 1
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where C'y'(x) is the inverse of training CDF Cx(x), and
Cy (y) is the test CDF of feature y.

In practice, training CDF, Cx (z), can be approximated by
corresponding cumulative histograms with finite numbers of
bins or a set of quantiles with the Gaussian distribution of a
zero mean and unit variance. Test CDF, Cy- (y), is approximated
by the corresponding cumulative histogram or the order statis-
tics-based CDF.

B. Class HEQ

Although HEQ achieves the goal of feature normalization
quite effectively for noise robust ASR, it still has some limi-
tations in practice [7]. One major limitation of HEQ is that it
needs phonetic or acoustic class distributions of training and
test to be identical or similar to each other. The other is that the
acoustic mismatch between training and test needs to be mono-
tonic transformation. The former condition is not well met when
test utterances are short. The latter tends to be violated by the
corruption of random noise under noisy environments. An ef-
fective approach to overcoming these limitations of the original
HEQ is the CHEQ technique [7], where test data are equalized
by employing class-specific training and test CDFs as

t= Zj:l P(ily)Cx ) [Cr i )] @)

where J denotes the number of classes, C’)}lj represents the
inverse of the jth training CDF, Cly(;y stands for the jth test

CDF, and P(j|y) is the posterior probability of the jth class
given test feature y, which is given by

: p(yl1)P)
P(.? |y) = T iy iy
= PP
where P(j) represents the prior probability of the jth class and

p(y|j) is the likelihood of y for the jth class and can be given
by the Gaussian model [7].

)

C. ML-based CDF Estimation

The classical approach to estimating histogram is the bin-
counting method, which can be derived by the maximum like-
lihood (ML) with a multinomial distribution as follows.

Suppose that % is the histogram bin into which feature com-
ponent y falls. Then, for a multinomial distribution with 7 being
a categorical random variable with K categories, i.e., histogram
bins {H1, -+, Hx }, let P{(h = Hy) = % be the probability of
h being the kth histogram bin. The likelihood of 7 given the pa-
rameter set of histogram bins is represented by

K A=,
P(me):]‘[k:le,ﬁ( )

where the indicator function I(% = #Hy) has 1 if B = Hy
and 0 for otherwise. Then, when test feature sequence S
= {y1, -+, yn} is given, the likelihood of the corresponding
bin set E = {%1,---, Ay} is given by

=TTV K Iha=Hy) _ TTX N
peEo) =1 Il 6 =II_, & ©®
with N, = > I(k,, = M) denoting the number of times that

4)

the elements of E are the kth histogram bin with the condition
of N = > Ng.
k
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Under this assumption, the ML estimate of 6y is obtained
from the derivation of the log-likelihood as

1(6) = log P(2)6) = Zk Ny, log 6y, (6)

With the probability constraint > 85, = 1, the Lagrange func-

k
tion can be derived by using a Lagrange multiplier
[(6)=2, Nilogfy + A1~ 6)

By taking derivative with respect to 8 and A, separately, and
using the constraint of 8y = 1, we have a result A = N

(7

k
which gives the ML estimate of 8, as
. Ny,
ot = 8
i N ®

Then, test CDF approximated by the ML-based cumulative his-
togram estimation is given by summing the estimates cumula-
tively as

. 1 k

CY P (y) = v Zk’:l Ny
where k satisfies the constraint of y € Hy, i.e., h = Hz. When
assuming a large amount of training data are available in devel-
oping speech recognition systems, training CDF can be accu-
rately obtained by estimating the cumulative histogram or di-
rectly utilizing a Gaussian with zero mean and unity variance
only once in the training phase. On the contrary, test CDF needs
to be estimated utterance-by-utterance or segment-by-segment
in the test phase. Moreover, the CDF estimation suffers from the
sparse data problem more severely when the test speech utter-
ance gets shorter or the number of classes in CHEQ becomes
larger. To cope with this sparse data problem, more efficient
and reliable methods for the test CDF estimation need to be
employed.

©)

D. Order Statistics-based CDF Estimation

An efficient approach to dealing with the sparse data problem
in CDF estimation is the order statistics-based method [5], given
as follows.

For random variable sequence S, its order statistic is defined
as

(10)

where T'(r) denotes the original time frame index of y in which
its rank is  when the elements of .S are sorted in ascending
order. The order statistics-based asymptotically unbiased esti-
mate of CDF is obtained by

yr) Sy < Syre) < S U

r(yn) — 0.5
N

where r(y) stands for the rank of y which ranges from 1 to N.

C2%(yn) = (11)

III. CHEQ WITH POSTERIOR MEAN-BASED CDF ESTIMATION

When the amount of data gets much smaller, the estimation
accuracy of the two aforementioned CDF estimation methods
also deteriorates due to overfitting of the test CDF mainly
caused by the sparse test data. One remedy for this overfitting
in CDF estimation is using the Bayesian priors such as the
MAP or PM estimation methods. With the Bayesian priors,
the histogram can be modeled by the Dirichlet-multinomial
conjugate distributions as follows.
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When the histogram bin % of the corresponding feature com-
ponent y has a multinomial distribution in (4), its conjugate prior
is the Dirichlet distribution defined by

1 K

p(d) = T

akfl
) 02 (12)

k=1
where 8, satisfies the constraint of > 8, = 1, the hyper pa-

k
rameter « is a set of pseudo counts {ey } and the normalizing
constant B(«) is the multinomial Beta function given by

K

T

Bla) = —Hk:}( (o) (13)
INODNITY)
with the gamma function defined as I'(a)) = Cszt‘l*le”‘ci’LL.
0
The posterior probability is given by
p(6|=) x p(E|6)p (0la)
e T T
- v (14
Hk TRALLI k=1

For the Dirichlet prior with parameter «;, the PM estimate of 8,

is given [14] as

N N .
i~ [ oz -
N4> 1 o
= (1= 0" + naj, (15)
with n 2 E ar /(N + Z ay) and «f, Efozk/N’ with its range
of 0 < af, g 1 using the prior strength N’ Z ag.
For comparison, the MAP estimate of 8, can be given by
5 N e — 1
OMAP — argmax p(4|2) = k;— Ak
[ N + Zk’ 1 (ay — ].)
' 1
— ( C)QA[L C( ay — 7\7’) (16)
PGS

with { Z(Qk - 1/(N+ Z(ak —1)).

In (16), 1t is noted that the MAP estimate can still suffer from
the sparse data problem in case of N + ay = 1. Therefore,
the PM-based CDF estimation can be more straightforward in
resolving the sparse data problem and approaches the ML esti-
mation as N — oc.

Test CDF with the PM-based cumulative histogram estima-
tion can be obtained by summing the PM estimates in (15) cu-

mulatively as
RE) SR

A critical issue in (17) is to find the actual information for this
prior. In HEQ, one strong candidate for the prior is training CDF
which is approximated by a cumulative histogram or a Gaussian
pdf. With cumulative histogram-based training CDF, the PM
estimate of test CDF is then given by

CYM(y) = (1 -G (y) + nCH ()

CEM(y) = (1 — )P (y (17)

(18)

where C¥(-) is the ML estimate version of training CDF.
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To take advantage of the order statistic-based CDF estimation
in (11) in the case of short test data, the PM-based test CDF
estimate can be incorporated with the order statistic-based CDF,
which is given by

(1 - g ) 202

Finally, CHEQ with the PM-based test CDF estimation incor-
porating the order statistic-based sample CDF is given by re-
placing test CDF in (2) with the PM-OS estimate as

=3 PUlnICK, [<1 : ”)RN(< >)

CEM O (y,) = + 0¥ () (19)

+nCY G (un)

(20)
with the soft counting statistics of the jth class defined by
N
N@) =), _ Plilu) (1)
7 (yn) .
Rilyn) =) Pllyz,w) (22)

where 7 (yy,) is the rank of y,, in the data set of the jth class.

IV. EXPERIMENTAL RESULTS

Experiments to evaluate the effectiveness of the proposed
CHEQ technique with the PM-based test CDF estimation de-
fined in (20) are carried out in the Aurora-4 framework [15]. The
Aurora-4 database has two training sets, clean and multi-condi-
tion sets. The clean training set consists of 7138 utterances of
the WSJO SI84 corpus. The multi-condition training set contains
7138 utterances consisting of one clean and six noisy subsets for
testing microphone and noise conditions. Noisy subsets were
built by artificially adding six types of noise at the randomly
selected SNR range between 10 dB and 20 dB with two micro-
phone conditions. The test set consists of 14 subsets. Two of
them consist of clean speech dataset of the Nov’92 5000 words
evaluation set, each of which was collected from different mi-
crophones. The remaining 12 test subsets were built by adding
six types of noise at the randomly selected SNRs between 5 dB
and 15 dB with two microphones. Our experiments were fo-
cused on the 16 kHz sampling rate.

The 39-dimensional mel-frequency cepstral coefficient
(MFCC)-based feature vectors, each of which consists of
log energy and 12 static MFCCs and their first and second
derivatives, are extracted with a frame length of 25 ms and an
interval of 10 ms in the experiments. Hidden Markov model
(HMM)-based speech recognition systems were used where
each triphone-based HMM consists of 3 states and each state
has 16 mixture components. Diagonal covariance matrices are
used in the HMM. The state-tying technique was employed
which yields about 2000 tied states through the experiments.
The bigram language model was used. The number of his-
togram bins in the training CDFs was empirically set to 64.
Histogram equalization was applied on all 39-dimensional
MFCC:s for both training and test feature data in the segment
level to deal with temporal noise variability and real-time
requirement. The parameter 7 was chosen empirically from the
experiments, which mostly ranges between 0.4 and 0.8.

Fig. 1 and 2 represent recognition results by CHEQ with
ML and PM based test CDF estimation along the number of
classes in the Aurora-4 clean and multi-condition training
tasks, respectively. The conditions of matched and mismatched

This paper previously published in IEEE Signal Processing Letters



2424

45
40 A u. -
& 35 {[=—CHEQ-ML (Matched)
~ ——CHEQ-PM (Matched)
g —=—CHEQ-ML (Mismatched)
a 30 -{{=¢=CHEQ-PM (Mismatched)
25 4
20 T T T

1 2 4 8 16 32
No. of Classes
Fig. 1. Recognition results of CHEQ using ML and PM based test CDF esti-
mation in the Aurora-4 clean-condition training task (averaged over one clean
and six noisy evaluation subsets, segmental CHEQ with segment size of 2 sec).
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Fig. 2. Recognition results of CHEQ using ML and PM based test CDF esti-
mation in the Aurora-4 multi-condition training task (averaged over one clean
and six noisy evaluation subsets, segmental CHEQ with segment size of 2 sec).

TABLE I
RECOGNITION RESULTS OF VARIOUS FEATURE NORMALIZATION AND
COMPENSATION TECHNIQUES IN THE AURORA-4 TASK (AVERAGED WER (%)
OVER ONE CLEAN AND SIX NOISY EVALUATION SUBSETS, SEGMENT SIZE

OF 2 SEC)

Feature Clean-condition Multi-condition
normalization | Matched | Mismatched | Matched | Mismatched
techniques

MFCC 43.19 61.55 19.21 38.09
CMN 36.88 53.83 18.84 31.32
CMVN 34.72 51.65 19.97 34.05
SCMN 31.89 47.56 18.97 31.77
SCMVN 33.75 50.04 21.55 33.94
ETSI-AFE 29.38 53.04 18.14 33.34
HEQ-ML 28.04 43.15 19.73 31.47
HEQ-PM 27.95 42.97 19.63 31.40
CHEQ-ML 25.48 38.10 19.21 3041
CHEQ-PM 22.40 37.73 17.02 29.35

refer to test sets of 1-7 and 8-14 of the Aurora-4 database,
respectively [15]. The segment size is set to 2 sec with the same
interval of 10 ms [5]. In the figures, it is observed that CHEQ
is clearly superior to the original HEQ. For both matched and
mismatched conditions, the PM-based method mostly provides
significant performance improvements over the ML-based
method. Its performance gain is generally more prominent in
the multi-condition training task, which may be resulted from
the fact that the prior contains multi-condition information.
Table I shows performance comparison with other well-known
feature normalization and compensation techniques including
the utterance versions of CMN and CMVN, segmental ver-
sions of CMN (SCMN) and CMVN (SCMVN), and the ETSI
advanced front-end (ETSI-AFE) feature extraction algorithm
[16]. In the table, we see that CHEQ-PM produces consistent
performance gains over the other feature normalization and
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compensation techniques by providing relative error reductions
of 48%, 12% and 11%, 11% over MFCC and CHEQ-ML in the
matched condition of both clean and multi-condition training
tasks, respectively. The performance gains over MFCC are
also significant in the mismatched conditions of both clean
and multi-condition tasks with relative error reductions of 38%
and 22%, respectively. However, performance improvements
over CHEQ-ML seem marginal in the mismatched conditions
of both training tasks. These results may be largely due to the
mismatch between training and test data sets, which results in
discrepancy between prior and sample distributions.

V. CONCLUSION

We proposed a CHEQ approach employing the PM method,
a kind of the Bayesian estimator, in estimating test CDF to im-
prove the performance of HEQ by reducing the overfitting of
HEQ when test data are sparse. The proposed method provides
substantial performance gain over other feature normalization
techniques including the ML-based CHEQ method.
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