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A Sparsity Basis Selection Method
for Compressed Sensing

Dongjie Bi, Yongle Xie, Xifeng Li, and Yahong Rosa Zheng, Fellow, IEEE

Abstract—This letter presents a new sparsity basis selection com-
pressed sensing method (SBSCS) for improving signal reconstruc-
tion from compressed sensing (CS) measurements. Based on the
observation that different classes of transform cause different spar-
sity expressions and better sparsity expression leads to better signal
recovery, the proposed SBSCS method searches the best class of
transform and basis in a set of redundant tree-structured dictio-
naries by nesting sparsity maximization within the CS minimiza-
tion. The SBSCS method adaptively selects the class of transform
and basis with the best sparsity measure at each iteration and
converges quickly to the final class of transform and basis. Nu-
merical experiments show that the proposed SBSCS method im-
proves the quality of signal recovery over the existing best basis
compressed sensing method (BBCS) proposed by Peyré in 2010.
Index Terms—Basis selection, compressed sensing (CS), sparsity

maximization, sparsity.

I. INTRODUCTION

C OMPRESSED sensing introduces a new signal ac-
quisition framework which uses a fixed set of linear

measurements together with a nonlinear recovery process, and
goes beyond the traditional Nyquist sampling paradigm [1], [2].
Considering an unknown signal , compressed sensing
uses a fixed set of linear measurements

to reconstruct the signal , where is
the measurement matrix with . The sparsity of in an
orthogonal basis and can be measured
by using the norm , where with
being the sparsifying operator. To guarantee sparse recovery,
the compressed sensing theory requires the sensed signal
to be sparse in the given orthogonal basis and the sensing
matrix to be incoherent with this basis.
Ideally, the optimally recovered signal is the so-

lution of the minimization , subject to the equality con-
straint . However the norm minimization problem
is combinational and intractable [3]. The common approach to
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the sparse signal recovery is to replace the norm by the
norm and relax the equality constraint to deal with noisy mea-
surements. The recovered optimal signal becomes

(1)

where is the regularization parameter.
If the orthogonal basis is fixed, then the optimization

problem (1) can be solved through an iterative procedure [3].
However, fixed bases are often inflexible in capturing the
regularity of sounds or natural images. For instance, orthogonal
wavelet bases define optimal approximations for classes of
piecewise regular functions, but are inefficient in compressing
regular edges; local cosine bases divide the time axis in seg-
ments that adapt to the local frequency content of a sound, but
fail to capture transient parts of a sound [3], [4]. To improve the
sparsity of complicated sounds or images, several orthogonal
bases that compose a large dictionary of atoms [5]–[7] are often
used.
In [1], the author proposes a best basis compressed sensing

method (BBCS) to search for the best basis through a tree-struc-
tured dictionary with objective energy minimization. In
contrast, our approach enhances the BBCS method in two
aspects: one is that we consider different classes of transform
which lead to different sparsity expression , and the best

sparsity expression during the iteration of solving (1) leads
to the best recovery of the signal ; another aspect is that
our method selects the basis based on sparsity maximization
instead of energy minimization. Hence we name our algorithm
Sparsity Basis Selection Compressed Sensing (SBSCS). The
numerical experiments show that the SBSCS method converges
quickly to the best class of transform and basis within a few
tens of iterations and the quality of signal recovery outperforms
the BBCS method.

II. BEST BASIS COMPRESSED SENSING METHOD (BBCS)

Complex signals and natural images often include structures
that require large redundant dictionaries [8], such as wavelet
packet, local cosine, and bandlet orthonormal bases [9], to in-
corporate many signal patterns and improve sparsity approxi-
mation. The efficiency of sparsifying signal in different classes
of wavelet transform, such as Haar, Coiflet and Daubechies, de-
pends mostly on the regularity of , the number of vanishing
moments of and its size of support [3]. When selecting the
best basis, the effect of using different classes of transform are
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often investigated. Let be the index of a specific class of trans-
form to be used, and denote as the set of . Tree dictio-
naries are constructed with a recursive split of orthogonal vector
spaces and by defining specific orthonormal bases in each sub-
space. For 1D signal, a tree dictionary is a set
of orthogonal bases of . The atoms of span sub-
spaces of for scale and po-
sition , that obey a refinement relationship

with . Each subspace has dimen-
sion and is equipped with one or several orthogonal bases

.
The parameter that indexes a basis is a binary

tree for a 1D signal or a quad-tree for a 2D signal. The set of
nodes of is denoted as and each node
is located in the th row and the th column of the tree. For
1D signal, each interior node has 2 chil-
dren . The leaf nodes
have no child.
Instead of using a fixed basis with fixed and , the BBCS

method finds a parameter adapted to the structures of
the signal and uses the basis with a fix class of transform
. The BBCS method tries to solve the following optimization
problem

(2)

The BBCS method solves (2) through a 3-stage iterative
process: updating the estimate of the signal, updating the
best basis , and denoising the estimate of the signal. The
updating best basis stage is a particular instance of the Classifi-
cation and Regression Tree (CART) algorithm [10], [11], which
first computes the cost function for each subspaces

, then explores all tree nodes from bottom to top, and finds
the leaf node with the minimum cost. A best basis is
then obtained by aggregating bases for that are leaves
of [3].

III. SPARSITY BASIS SELECTION COMPRESSED
SENSING METHOD (SBSCS)

A. Sparsity Basis Selection Method For Compressed Sensing
Considering both sets of and , we try to solve the sparsity

based optimization problem (3) instead of (2)

(3)

with representing the sparisty measure of the signal,
which we choose to use the Gini index as detailed in
Section III-B. For a fixed setting of and ,
the optimization problem (3) degrades to (1) which can
be solved through an iterative soft-thresholding algo-
rithm by minimizing its surrogate function

during the iterations [12]–[15]. With , this sur-

rogate objective function is a majorization of the orig-
inal problem and minimization of this surrogate function
leads to a majorization minimization (MM) algorithm [15].
This surrogate function has a unique mini-
mizer , with

and .
To choose the best class of transform and basis during the

iterations of solving (3), the proposed SBSCS method also uses
a 3-stage optimization process, as shown in Algorithm 1. The
main differences between the SBSCS and BBCS methods are
that the proposed SBSCSmethod uses an optimal basis selection
process, as shown in Step 4 of Algorithm 1, to search for both
the best class of transform and the best basis during the
iterations of optimization.

Algorithm 1 The Sparsity Basis Selection Compressed
Sensing (SBSCS) Method

1: Initialization: Choose , , iteration
index .
2: repeat
3: Update the estimate: .
4: Update the best class of transform and basis:

This step is detailed in Section III-B.
5: Denoise the estimate: .
6: Until .

The steps of Algorithm 1 are repeated until a user defined tol-
erance is reached. For noisy measurements , the
regularization parameter is adjusted so that the final residual
error satisfies , where is a Gaussian
white noise of variance . For noiseless measurements, Al-
gorithm 1 is also applicable by reducing the value lin-
early to zero during the iterations in a fashion similar to theMor-
phological Components Algorithm (MCA) [16]. Similar to the
BBCS method, the convergence of the SBSCS method is diffi-
cult to prove mathematically, but our extensive numerical ex-
periments indicate that the SBSCS method always converges to
a stable class of transform after a small number of iterations
and the quality of the recovered signal gradually converges to
a stable value after a larger number of iterations. Therefore, the
computational complexity can be further reduced by stopping
the optimal basis selection process after is converged to its
final value which often takes 20-50 iterations. In comparison,
the BBCS method uses a best basis search process via energy
minimization during the iteration, which causes over-segmen-
tation of the recovered signal [1]. Algorithm 1 uses the sparsity
maximization instead of energy minimization, thus reducing the
over-segmentation drawback of the BBCS method.

B. Optimal Basis Selection via Sparsity Maximization
Intuitively, a sparse representation is one in which a small

number of coefficients contain a large proportion of signal en-
ergy [17]. The authors of [18] examine and compare several
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commonly-used sparsity measures quantitatively, based on in-
tuitive and desirable attributes which they call Robin Hood,
Scaling, Rising Tide, Cloning, Bill Gate, and Babies. Only two
of these measures satisfy all these six attributes: the mean
with and the Gini Index.
In this letter, the Gini Index is used to measure the sparsity

of the signal , with its elements re-ordered
and represented by for , where

, then the Gini index is defined as [18]

(4)

Denote as the projections of signal
on subspace , and we concatenate the child vectors to

form . Since
the vectors and have the same length
and energy, the sparsity of these two vectors can be directly
compared. Taking advantage of the tree-structured dictionaries,
a fast optimal basis selection process is proposed to overcome
this undesirable characteristic and quickly search the best class
of transform and basis . If the GI Index of the root-node

is greater than the child-node ,
then node . The basis is then obtained by ag-
gregating bases for that are leaves of . The optimal
basis selection based on sparsity maximization is shown in Al-
gorithm 2, where is the size of or the number of classes of
transform, is selected as the Gini index.

Algorithm 2 Optimal Basis Selection via Sparsity
Maximization:

1: Let be the Gini index
2: for1 U do
3: for do
4: for do
5: If then
6: Declare as leaf .
7: else
8: Declare as interior .
9: .
10: .
11: .

This optimal basis selection process searches the dictionaries
from top to bottom, requiring decomposition of onto each
atom and signal sparsity computation GI on different
classes of transform. The computational complexity of the
algorithm is , where is the total number of atoms in

. If implemented with the local cosine or wavelet packets,
the algorithm has an overall computational complexity of

.

IV. EXPERIMENTAL RESULTS
To evaluate the performance of the SBSCS method, we

selected different classes of local cosine and wavelet

Fig. 1. (a) Synthetic signal with 30 random cosine atoms , with best
spatial segmentation . (b) Recovery using SBSCS method with Haar wavelet
filter as the initial guess , . (c) Recovery using BBCS method with
local cosine basis with Sine filter, . (d) Recovery using BBCSmethod
with wavelet packet with Coiflet_8 filter, . (e) Recovery using BBCS
method with wavelet packet with Daubechies_8 filter, .

packet transform for CS. We used Sine and Trivial as the
bell filters which determine the local cosine tree [3]. We used
wavelet packet transform with different quadrature mirror
filters, such as Haar, Beylkin, Coiflet, Daubechies, Symmlet,
Vaidyanathan, Battle, and with different support and vanishing
moments. We denote Coiflet_8 as the wavelet packet transform
with Coiflet filter containing 8 vanishing moments. To generate
compressed sensing measurements, we used a fast operator

to sample the original fully-sampled data,
where and are realizations of a random permutation
of the entries of a vector in , is a 1D orthogonal
Hadamard transform, and selects the first entries of a
vector.
As the first example, a synthetic sparse signal was generated

as using a random local cosine basis with Sine
filter and a random signal of spikes with , as
shown in Fig. 1(a). In the noiseless measurements , both
SBSCS and BBCS methods used a uniform basis as the first
guess, and the SBSCS used the Haar wavelet filter as the first
guess of . Using the SBSCS method, the recovered signal ,
shown in Fig. 1(b), is nearly identical to and converged to
the best class of transform (local cosine tree with Sine filter),
and the final basis segmentation differed slightly from the
best basis segmentation .
If the BBCS method chose the best class of transform as the

first guess of , then the BBCS method performed well in signal
recovery, but sufferedmore over-segmentation problem than the
SBSCSmethod in the small-amplitude signal interval, as shown
in Fig. 1(c). This was because the best basis updating of the
BBCS method is sensitive to small changes in the signal, which
leads to poor performance of signal recovery, while the pro-
posed optimal basis selection method via sparsity maximization
eases this problem. Furthermore, if the BBCS method chose the
wrong class of transform, such as wavelet packet with Coiflet_8,
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Fig. 2. PSNR results of the SBSCS andBBCSmethod used in a synthetic signal
contaminated by different level of noise, with .

Daubechies_8 filter as the , then the recovered signals suf-
fered far more over-segmentation problem and resulted in worse
signal quality, as shown in Fig. 1(d)–(e).
In addition, the proposed SBSCS method is particularly

useful in dealing with noisy measurements. We added different
level of noise to the synthetic signal with Signal to Noise
Ratio (SNR) and processed the CS signal recovery again.
The Peak SNR (PSNR) results are shown in Fig. 2. It is easily
seen that the SBSCS method performed equally well as the
BBCS method when the best class of transform was chosen as
the first guess of for the BBCS, but outperformed the BBCS
when the wrong class of transform was initially chosen.
The second example used a sound of a tiger howling as shown

in Fig. 3(a), with and . In this ex-
ample, both SBSCS and BBCS methods used a uniform basis as
the first guess of , and the SBSCS method used local cosine
basis with Sine filter as the first guess of . To demonstrate the
performance of the proposed optimal basis selection process,
we fix to a specific class of transform, as shown in Fig. 3(c),
(e). Thus the SBSCS method reduces to a simple basis selec-
tion process just like the BBCS method which does not search
through the different classes of transform. From the PSNR re-
sults in Fig. 3(c)–(f), we can see that the BBCS method suf-
fered more over segmentation problem in than the proposed
SBSCS method. Instead of using an energy function as the cost
function to search for the best basis, which is sensitive to the
noisy interference, the proposed optimal basis selection process
was more robust against noisy interference and resulted in better

basis segmentation.
When the optimal basis selection was used to search through

the different classes of transform, the SBSCS method
searched the best class of transform and basis through a
much larger set of dictionaries. The SBSCS method achieved a
higher PSNR than other methods, as shown in Fig. 4. Within the
fist few iterations of the SBSCS method, the class of transform
parameter changed from local cosine basis with Sine filter to
the wavelet packet with Coiflet_10 filter after one iteration, then
changed to the wavelet packet with Vaidyanathan filter after 27
iterations, and finally stayed at that transform afterwards. When
the signal is sparse in at least one class of transform , the
adaptability of the during the iterations allowed the SBSCS
method to find the best class of transform and basis.

Fig. 3. (a) Sound of a tiger howling with . (b) Recovery from
using the SBSCS method with local cosine basis with Sine filter

as the initial guess , achieved dB. (c) Recovery from
using the SBSCS method with fixed wavelet packet with Daubechies_2

filter, achieved dB. (d) Recovery from using
the BBCS algorithm with wavelet packet with Daubechies_2 filter, achieved

dB. (e) Recovery from using the SBSCS method
with fixed local cosine basis with Sine filter, achieved dB.
(f) Recovery from using the BBCS method with local cosine basis
with Sine filter, achieved dB.

Fig. 4. PSNR convergence of the SBSCS and BBCS method used in sound of
a tiger howling.

V. CONCLUSION

In this letter, a sparsity basis selection compressed sensing
method, called SBSCS, is proposed for improving the re-
construction from compressed sensing measurements. The
proposed SBSCS method takes advantage of the fact that
different classes of transform lead to different sparsity expres-
sions, and embeds a fast optimal basis selection via sparsity
maximization in the CS iterations to search for the best class of
transform and basis. Numerical results show that the proposed
SBSCS method converges fast to the optimal transform and
basis within iterations, and outperforms the best basis
compressed sensing method (BBCS)[1] in terms of the quality
of recovered signals.
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