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Discrete Signal Reconstruction by
Sum of Absolute Values

Masaaki Nagahara, Senior Member, IEEE

Abstract—In this letter, we consider a problem of reconstructing
an unknown discrete signal taking values in a finite alphabet from
incomplete linear measurements. The difficulty of this problem is
that the computational complexity of the reconstruction is expo-
nential as it is. To overcome this difficulty, we extend the idea of
compressed sensing, and propose to solve the problem by mini-
mizing the sum of weighted absolute values. We assume that the
probability distribution defined on an alphabet is known, and for-
mulate the reconstruction problem as linear programming. Exam-
ples are shown to illustrate that the proposed method is effective.
Index Terms—Compressed sensing, digital signals, discrete

signal reconstruction, sparse optimization, sum of absolute values.

I. INTRODUCTION

S IGNAL reconstruction is a fundamental problem in signal
processing. Recently, a paradigm called compressed

sensing [1], [2], [3] has been proposed for signal reconstruc-
tion from incomplete measurements. The idea of compressed
sensing is to utilize the property of sparsity in the original
signal; if the original signal is sufficiently sparse, practical al-
gorithms such as the basis pursuit [4], the orthogonal matching
pursuit [5], etc, may give exact recovery under an assumption
on the measurement matrix (see e.g. [3]).
On the other hand, it is also important to reconstruct discrete

signals whose elements are generated from a finite alphabet with
a known probability distribution. This type of reconstruction,
called discrete signal reconstruction, arises in black-and-white
or grayscale sparse image reconstruction [6], [7], blind esti-
mation in digital communications [8], machine-type multi-user
communications [9], discrete control signal design [10], to name
a few.
The difficulty of discrete signal reconstruction is that the re-

construction has a combinatorial nature and the computational
time becomes exponential. For example, 200-dimensional
signal reconstruction with two symbols (i.e. binary signal
reconstruction) needs at worst about years with
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a computer of 34 peta FLOPS (see Section II below), which
cannot be executed, obviously.
To overcome this difficulty, we borrow the idea of com-

pressed sensing based on optimization as used in the basis
pursuit [4]. Our idea is that if the original discrete signal, say
, includes symbols , then each vector

is sparse. For example, a binary vector on alphabet
includes a number of 1 and , and hence both and
are sparse. To recover such a discrete signal, we propose to
minimize the sum of weighted absolute values of the elements
in . The weights are determined by the probability
distribution on the alphabet. The problem is reduced to a
standard linear programming problem, and effectively solved
by numerical softwares such as in [11], [12].
For discrete signal reconstruction, there have been researches

based on compressed sensing, called integer compressed
sensing: [13] has proposed a Bayesian-based method, which
works only for binary sparse signals (i.e., 0-1 valued signals
that contain many 0’s). [9] considers arbitrary finite alphabet
that contains 0. More recently, motivated by decision feedback
equalization, [14] proposes to use optimization for discrete
signal estimation under the assumption of sparsity. [15], [16],
[7] also propose methods based on the finiteness of the mea-
surement matrix (i.e., the elements of the measurement matrix
are also in a finite alphabet). As mentioned in [15], this type of
integer compressed sensing is connected with error correcting
coding. Compared with these researches, the proposed method
in this paper considers arbitrary finite alphabet that does not
necessarily contain 0.
The remainder of this letter is organized as follows:

Section II formulates the problem of discrete signal re-
construction and discusses the difficulty of the problem.
Section III proposes to use the sum of weighted absolute values
for discrete signal reconstruction, and show a sufficient and
necessary condition for exact recovery by extending the notion
of the null space property [17]. Examples of one-dimensional
signals and two-dimensional images are included in Section IV.
Section V draws conclusions.

Notation: For a vector , we
define the and norms respectively as

where denotes the transpose. For a vector and a scalar ,
we define
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For a matrix , is the kernel (or the null space)
of , that is,

is the -dimensional identity matrix, and is a -dimen-
sional vector whose elements are all 1, that is,

For two matrices and , denotes
the Kronecker product, that is,

...
...

. . .
...

where is the -th element of . For two real-valued vec-
tors and of the same size, denotes the element-wise
inequality, that is, means for all .

II. PROBLEM FORMULATION

Assume that the original signal is an -dimensional vector
whose elements are discrete. That is,

where and we assume

(1)

If a symbol, say , is a complex number, then taking
and gives a real-valued alphabet, and hence the
assumption (1) is not restrictive. We here assume that the values
of are known and the probability distribution of them is given
by

(2)

where we assume

(3)

Then we consider a linear measurement process modelled by

(4)

where . Note that we consider a complex-valued
matrix since can be constructed from e.g. a complex-valued
DFT (Discrete Fourier Transform) matrix; see the image pro-
cessing example in Section IV. We assume incomplete mea-
surements, that is, . The objective here is to reconstruct

from the measurement vector in (4).
First of all, we discuss the uniqueness of the solution of the

discrete signal reconstruction. We have the following proposi-
tion:
Proposition 1: Given , the following properties

are equivalent:
(A) If and both and are in , then

.
(B) Define the difference set of as

Then

(5)

(C) The matrix is injective as a map from to .
Proof: (A) (B): Assume (A) holds. Take any
. Since , there exist such that

. Then we have since .
Then from (A), we have . It follows that .
(B) (C): Assume (B) holds. Take any and assume

. Then from (B), we have . This proves is an
injective map from to .
(C) (A): Assume that (C) holds. Take any

such that . Since and is injective
on , we have , or .
Throughout the letter, we assume the uniqueness of the solu-

tion, that is, the pair is chosen to satisfy (5). If the unique-
ness assumption holds, we can find the exact solution in a finite
number of steps via an exhaustive computation as follows. The
set is a finite set, and we can write .
For each , we compute and check if . Thanks
to the uniqueness assumption, we can find the exact solution in
a finite time. The problem is that the size of is ,
and hence the computational complexity is exponential. For ex-
ample, if (two symbols) and , then

which takes at worst about years (much longer than
the lifetime of the universe) by the current fastest computer with
34 peta FLOPS. To overcome this, we adopt a relaxation tech-
nique based on the sum of absolute values in the next section.

III. SOLUTION VIA SUM OF ABSOLUTE VALUES

We here propose a relaxation method for discrete signal re-
construction. By borrowing the idea of compressed sensing, we
can assume that each vector , , is sparse
(if the probability given in (2) is not so small), and the spar-
sity is proportional to the probability . Hence, we consider the
following minimization problem:

minimize subject to (6)

where we use the norm for the measure of sparsity as in com-
pressed sensing. By the definition of the norm, we rewrite the
cost function as

(7)

where is the sum of weighted absolute values

An example of this function is shown in Fig. 1. As is shown in
this figure, the function is continuous, convex, and piece-
wise linear. In fact, we have the following proposition:
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Fig. 1. Piecewise linear function in the cost function (7).

Proposition 2: The function is continuous and convex
on and is a piecewise linear function given by

where

Proof: Since each function in is continuous
and convex on , the function , which is the convex combi-
nation of , , is also continuous and convex
on .
Suppose . From the inequality (1), we have

for , and hence

where we used (3). Next, suppose
( ). The inequality (1) gives for

and for . It
follows that

Finally, if , then for due to (1),
and hence

Note that the function is rewritten as

where , , , and . It follows that
the optimization (6) is equivalently described as

subject to (8)

where is an auxiliary variable, and

This is a standard linear programming problem and can be effi-
ciently solved by numerical optimization softwares, such as
in [11], [12].
Now, we discuss the validity of the relaxation optimization

given in (6) or (8). To see this, we extend the notion of the null
space property [17] in compressed sensing to our problem:
Definition 1: A matrix is said to satisfy the null

space property for an alphabet if

(9)

for any and any .
Then we have the following theorem:
Theorem 1: Let . Every is uniquely

recovered from the optimization (6) with if and only
if satisfies the null space property for .

Proof: ( ): Take any and . Put
. Since , we have

, or . This means that is in the feasible set of the
optimization problem (6) with . Also, we have
since . Now, by assumption, is the unique solution of
(6) with , and hence we have
.
( ): Take any and such that and

. Put . Then we have .
From the null space property for , we have

. It follows that is the unique solution of (6).

IV. EXAMPLES

In this section, we show two examples to illustrate the effec-
tiveness of the proposed method.
The first example is one-dimensional signal reconstruction

with multiple symbols. Let the original signal be a 200-di-
mensional vector (i.e. ) and the elements are drawn
from the following alphabets with probability distributions:

(10)

where . We assume the measurement vector is a
100-dimensional vector (i.e. ), and the measurement
matrix is generated such that each element is independently
drawn from the Gaussian distribution with a mean of 0 and
a standard deviation of 1 by using a MATLAB command,

. The original vector is also generated such
that each element is independently drawn from the distribution
(10) with varying parameter . Fig. 2 shows the graphs
of the averaged NSR (noise-to-signal ratio) for

in (10), where is the reconstructed signal, with
This paper previously published in IEEE Signal Processing Letters
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Fig. 2. Averaged NSR vs probability for (top),
(middle), (bottom), by the proposed (solid) and the basis pursuit (dash).

Fig. 3. Original image (left) and disturbed image by random noise (right).

200 trials of random and for each . If is large
(i.e., ), then the original vector is sparse, and we also
reconstruct the original signal by the basis pursuit

subject to

and then round off the values by the basis pursuit to the nearest
integer. The error graphs by the basis pursuit are also shown in
Fig. 2. For the binary alphabet , one may exchange
the roles of 0 and 1 before performing the basis pursuit, and
the error curve below is pessimistic. However, such
a simple strategy cannot be applied to and for the basis
pursuit, while the proposed method works well for small . This
is because the basis pursuit does not fully utilize the information
of the alphabet (i.e., the basis pursuit only uses the information
of the value 0 through the sparsity). We also note that the basis
pursuit can be used only when the alphabet includes 0, while the
proposed method works as well when 0 is not an element of the
alphabet. Fig. 2 also implies a conjecture that the performance
of the proposed method converges that of the basis pursuit as
the size of the alphabet goes to infinity.
Next, we see an example from image processing. Let

us consider a binary (or black-and-white) image shown in
Fig. 3 (left), which is a -pixel binary-valued image. We

Fig. 4. Reconstructed images by the basis pursuit (left) and by the proposed
method (right).

add random Gaussian noise with a mean of 0 and a standard
deviation of 0.1 to each pixel to obtain a disturbed image as
shown in Fig. 3 (right). We represent this disturbed image as
a real-valued matrix . Then we apply the discrete
Fourier transform (DFT) to to obtain

(11)

where is the DFT matrix defined by

...
...

...
. . .

...

where and . The relation can be
equivalently represented by

We then randomly down-sample the vector to obtain a
half-sized vector . The measurement matrix is then a

matrix generated by randomly down-sampling row
vectors from . Fig. 4 shows the reconstructed images
by the basis pursuit with rounding off (left) and by the proposed
method (right). For the proposed method, we assumed

. The results clearly show the effectiveness of our
method also for image reconstruction.

V. CONCLUSION

In this letter, we have proposed a reconstruction method for
discrete signals based on the sum of absolute values (or the
weighted norm). The reconstruction algorithm is described
as linear programming, which can be solved effectively by
numerical optimization softwares. Examples have been shown
that the proposed method is much more effective than the basis
pursuit which only uses the information of sparsity. Future
work includes an accessible condition that ensures the null
space property, as the restricted isometry property in com-
pressed sensing.
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