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Recursive Hybrid Cramér–Rao Bound for
Discrete-Time Markovian Dynamic Systems

Chengfang Ren, Jérome Galy, Eric Chaumette, François Vincent, Pascal Larzabal, and Alexandre Renaux

Abstract—In statistical signal processing, hybrid parameter es-
timation refers to the case where the parameters vector to estimate
contains both non-random and randomparameters. As a contribu-
tion to the hybrid estimation framework, we introduce a recursive
hybrid Cramér–Rao lower bound for discrete-timeMarkovian dy-
namic systems depending on unknown deterministic parameters.
Additionally, the regularity conditions required for its existence
and its use are clarified.

Index Terms—Parameter estimation, dynamic Markovian sys-
tems, estimation error lower bound.

I. INTRODUCTION

S INCE its introduction in the context of array shape cali-
bration [1], hybrid parameter estimation has given rise to

a growing interest as both random and nonrandom parameters
occur simultaneously in miscellaneous estimation problems
[2]–[9]. However, the hybrid estimation framework is not just
the simple concatenation of the Bayesian and non-Bayesian
techniques and new estimators have to be derived [10, §1.1].
Similarly, performance analysis methods of such estimators has
to be modified accordingly, which is the aim of hybrid lower
bounds on the mean square error (MSE).
The first hybrid lower bound, the so-called hybrid

Cramér–Rao bound (HCRB), has been introduced in [1] where
the random parameters have a prior probability density function
(pdf) independent from deterministic parameters. This initial
characterization of hybrid estimation has been generalized by
Reuven and Messer [2] who introduced the first “large-error”
hybrid bound, the so-called hybrid Barankin Bound (HBB),
in order to handle the threshold phenomena and of which one
limiting form yields the HCRB. This seminal work [2] has been
lately extended to new “large-error” hybrid bounds [7]–[12] in
order to improve the estimation of the transition region where
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the threshold phenomena occurs. Unfortunately, the compu-
tational cost of hybrid “large-error” bounds is prohibitive in
most applications when the number of unknown parameters
increases. Concurrently, an extension of the HCRB where the
prior pdf of the random parameters depends on deterministic
parameters was proposed in [6] and its asymptotic tightness was
further analyzed in [13]. All these works have shown that, like
the deterministic CRB and Bayesian CRB (BCRB), the HCRB
is valid in the asymptotic region only, i.e., when signal to noise
ratio is high or the number of observations is large.
In the Bayesian estimation framework, discrete-time Mar-

kovian dynamic systems (MDS) arises in various applications
such as adaptive control, analysis, and prediction of nonsta-
tionary time series [14]. As is well known, the optimal estimator
for this problem cannot be built in general, and it is necessary to
turn to one of the large number of existing suboptimal filtering
techniques [14]. Assessing the achievable performance may be
difficult, and we have to resort to simulations and comparing
proximity to bayesian lower bounds corresponding to optimum
performance [10], [15], [16]. Actually, most discrete-time MDS
incorporate some deterministic parameters which can be either
known [10] or unknown [6] according to the experimental
conditions. Even when the deterministic parameters are known,
some of the true values may originate from a prior calibration
process which accuracy impacts on the optimum performance
of random parameter estimates. In both cases, there is a need for
computationally tractable hybrid lower bounds for discrete-time
MDS depending on unknown deterministic parameters.
As a contribution, we introduce the first recursive form of an

hybrid lower bound for discrete-time MDS, namely the recur-
sive HCRB, which, provided that one keeps in mind its limita-
tions, is a lower bound of great interest for system analysis and
design in the asymptotic region. Additionally we discuss the reg-
ularity conditions required for the existence and the use of the
recursive HCRB, which are critical to understand not only the
applicability limit of the recursive HCRB but also why, in most
case, the posterior BCRB cannot be transformed into the recur-
sive HCRB as it is misleadingly suggested in [15] and [16].

II. RECURSIVE HCRB FOR DISCRETE-TIME MDS

In hybrid parameter estimation one wishes to estimate an un-
known hybrid parameter vector 1 from a random obser-
vation vector . Some prior knowledge is available on
random parameter that is incorporated by an a priori
pdf which support is a subset of . No such knowl-
edge is available on and thus it is considered

1For column vectors , denotes
the vertical concatenation
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deterministic. In the general case, may depend on the un-
known parameter , and it is denoted . The conditional
pdf of given parameterized by is and their joint
pdf parameterized by is given by .
Then, for any estimators of and of , one of the
possible lower bounds [10]–[12] deriving from the covariance
inequality principle (16) is the HCRB which usual form is given
by [10]:

(1)

(2)

where , is the statis-
tical expectation of the vector of functions with respect to
and parameterized by , and for two matrices, means
that is positive semi-definite. The regularity conditions
for the hybrid Fisher information matrix (HFIM) to be of
the usual form (2) are (see Section III):
R1): ,
(R2): .
Moreover, under its usual form (1), the HCRB is a

lower bound for the class of estimates satisfying (R3):
.

Our main concern is the derivation of a computationally
tractable HFIM (2) for hybrid discrete-time MDS represented
with the state and measurement equations:

(3)

where is a time index, is the -dimensional state
vector, is the -dimensional measurement vector,
and are known parametric vector functions depending
on an unknown deterministic parameter vector ( and respec-
tively). The process noise sequence and the measurement
noise sequence are mutually independent white sequences
described by known pdfs and , respectively, de-
pending on an unknown deterministic parameter vector ( and
respectively). The noises are independent of the initial state
described by the known pdf . Let

be the vector gathering all the unknown deterministic parame-
ters. The state transition and the measurement pdfs depend on
unknown deterministic parameters:

and we suppose that both and are twice dif-
ferentiable with respect to all their arguments. We adopt the no-
tational convention: where all vectors
are of same dimension. Since (3) is a MDS:

(4)

From a theoretical point of view, we are primarily interested in
the HFIM (2) on ( ) associated to the observa-
tion vector resulting from the set of measurements

:

which alternative formula is [1]–[10]:

(5)

Unfortunately the computation of (5) requires the derivation of
the marginal pdf from (4) which is generally math-
ematically intractable [1]–[15]. However an upper bound of (5)
can be derived from the HFIM (2) on ( ) associ-
ated to the observation vector :

(6)

Indeed, if we decompose as:

then a generalization of Proposition 1 in [17] (which proof fol-
lows lines similar to the proof of Theorem 1 in [13]) to hybrid
estimation yields:

(7)

where:

(8)

and leading to:

(9)

defines a looser (in comparison with ) but gen-
eral computable hybrid bound for discrete-time MDS pdf (4).
Additionally is computationally tractable: it can be as-
sessed without computing the inverse of large matrices such as

matrix . Indeed (8) can be decomposed
into block matrices:

(10)

which obey the recursion (see the Appendix for details):

(11)
where:

(12)

This paper previously published in IEEE Signal Processing Letters



REN et al.: RECURSIVE HYBRID CRB FOR DISCRETE-TIME MARKOVIAN DYNAMIC SYSTEMS 1545

(13)

(14)

Using definition (10) of and the associated recursion
(11) only involve computations with matrix of dimension
( ). Therefore it seems adequate to
name and the “recursive” HFIM and HCRB (for
discrete-time MDS), respectively. Some special cases of in-
terest can be easily derived by updating the definitions of ,

, and accordingly. For instance, if
, i.e. there is no unknown deterministic parameter, then

(11)(12) reduce to:

(15)
and , which are (21–25) in [15]. If (3) reduces to:

with known pdfs , , , then one only needs
to set , and ,
yielding: , ,

. If (3) reduces to:

with known pdfs , , , then one only needs to set
, and . Inter-

estingly enough, the application considered in [6] addresses this
case with measurement and state equations given by:

where are i.i.d. discrete random variable with
. Although authors in [6] were primarily interested in the

direct computation of (6), a careful examination of the
derivation reveals that in [6, (22)] is another possible
recursive form for (10) allowed by the specific dis-
crete-time MDS considered. Thus [6, (22)] provides an example
of the behavior of the recursive HCRB (9) for a practical phase
estimation problem.

III. REGULARITY CONDITIONS FOR THE RECURSIVE HCRB
We discuss in this section the regularity conditions (stated in

the previous section) required for the existence and the use of the

recursive HCRB (9) deriving from the usual form of the HCRB
(1). This discussion clarifies some previous results on HCRB
[2]–[13] and is also helpful to understand why, in most case, the
posterior BCRB cannot be transformed into the recursive HCRB
as it is misleadingly suggested in [15][16].
Let ,

and
. We assume that for any

couple set not empty,
exists. Then, for any -dimensional real-valued vector

with finite second order moment, the covariance
inequality principle yields [18]:

(16)

(17)

(18)

Note that (18) depends on the estimation scheme
in general; however, some judicious choices of lead
to various lower bounds [10]–[12]. Thus, the
leading to HCRB is a limiting form of the leading to
the HBB which may be derived from the McAulay-Seidman
bound (MSB) [19]. The MSB is the usual approximation of the
Barankin Bound (BB) [20], the greatest lower bound on the
MSE on deterministic parameters , resulting from a discretiza-
tion of the uniform unbiasedness definition2:

expressed for a subset of test points [19]–[22]:

(19)

Unfortunately, in hybrid estimation the MSB can hardly ever be
computed to lower bound the MSE of unbiased estimators of
since a closed-form expression of hardly ever exists. In-
terestingly enough, this major stumbling block can be bypassed
for a general class of pdf. Let denote the indicator func-
tion of subset of . Then, some easy integral calculuses show
that, for any for which:

(20)

subject to (20), (19) can be recasted as:

(21)

Additionally, if also satisfies:

(22)

then, some other easy integral calculuses show that, subject to
(20) and (22), any estimator of satisfies:

(23)

2For a straightforward extension to biased estimators see [21][22].
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Unlike what is stated in [2], [6], [13], first, (23) proves that for
each class of estimates satisfying:

a specific HBB (16) (and a specific HCRB) can be computed.
The class of wide-sense unbiased estimates [13, (11)] is only the
particular case where . Second, the regularity condition
(20)(22) required for the existence of the HBB only imposes on

to be of the following form:

(24)

where and are subsets of , what means that may be
a discrete subset of or a subset of intervals of . Since the
HCRB is the limiting case of the HBB obtained for:

where is the th column of the identity matrix, and by let-
ting ( ) be infinitesimally small, there-
fore (24) reduces to: , that is (R1).
Last, the simplest form of (18), i.e. , is obtained for the
class of estimates satisfying (R3):

(25)

leading to the usual form of the HCRB (16):

(26)

which contains elements with finite modulus provided that (R2):
.

Since the standard form of the HFIM (2), (6), [6], [10], [13]
shares a common analytical form with the posterior BFIM [10]:

one might think that the posterior BFIM becomes naturally a
HFIM (6) when some random parameters are transformed into
deterministic parameters by discarding their prior information
as mentioned in [15] and [16]. For example, if we consider that

is unknown, then setting in (15) as suggested in
[15], [16], is equivalent to transform into:

(27)

Even if the recursion (15) still holds when computed with the
conditional pdf (27), the block matrices obtained are valid com-
ponents of the recursive HFIM (10) if and only if (R1) is satis-
fied. Thus, if any of , or have a support
which is not, , or , respectively [23], then in (15)
is not a HFIM. Additionally, even if pdfs support are , or

, respectively, the HFIM obtained is valid only for estimates
satisfying (R3) and are no longer valid for any realizable esti-
mate as it is the case for the BFIM [23]. Therefore it is critical to
understand that discarding prior information in the computation
of the BCRB change thoroughly the estimation problem under
consideration and that the correct rationale to address the com-
putation of a HCRB for MDS problem is the one introduced.

APPENDIX

Let . First (6) can be broken down
as: shown at the bottom of the page.Therefore, using block ma-
trix inversion [24, p 293]:

(28)

Moreover, for MDS, (4) leads to:

yielding:

where are given by (12) and (13). Second, using once
again block matrix inversion:

Finally, by noting that , a few addi-
tional lines of calculus allows to show that equivalent forms of

, and in (28) are given by (11).
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